Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136382478> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3136382478 abstract "Traffic control optimization is a challenging task for various traffic centers around the world and the majority of existing approaches focus only on developing adaptive methods under normal (recurrent) traffic conditions. Optimizing the control plans when severe incidents occur still remains an open problem, especially when a high number of lanes or entire intersections are affected. This paper aims at tackling this problem and presents a novel methodology for optimizing the traffic signal timings in signalized urban intersections, under non-recurrent traffic incidents. With the purpose of producing fast and reliable decisions, we combine the fast running Machine Learning (ML) algorithms and the reliable Genetic Algorithms (GA) into a single optimization framework. As a benchmark, we first start with deploying a typical GA algorithm by considering the phase duration as the decision variable and the objective function to minimize the total travel time in the network. We fine tune the GA for crossover, mutation, fitness calculation and obtain the optimal parameters. Secondly, we train various machine learning regression models to predict the total travel time of the studied traffic network, and select the best performing regressor which we further hyper-tune to find the optimal training parameters. Lastly, we propose a new algorithm BGA-ML combining the GA algorithm and the extreme-gradient decision-tree, which is the best performing regressor, together in a single optimization framework. Comparison and results show that the new BGA-ML is much faster than the original GA algorithm and can be successfully applied under non-recurrent incident conditions." @default.
- W3136382478 created "2021-03-29" @default.
- W3136382478 creator A5004662910 @default.
- W3136382478 creator A5053939434 @default.
- W3136382478 creator A5069363273 @default.
- W3136382478 creator A5087297482 @default.
- W3136382478 date "2021-03-10" @default.
- W3136382478 modified "2023-09-26" @default.
- W3136382478 title "Boosted Genetic Algorithm using Machine Learning for traffic control optimization" @default.
- W3136382478 cites W1483565576 @default.
- W3136382478 cites W1540371141 @default.
- W3136382478 cites W1541288193 @default.
- W3136382478 cites W1969758122 @default.
- W3136382478 cites W1986459634 @default.
- W3136382478 cites W2020070197 @default.
- W3136382478 cites W2024424774 @default.
- W3136382478 cites W2074500080 @default.
- W3136382478 cites W2088595989 @default.
- W3136382478 cites W2100677568 @default.
- W3136382478 cites W2124657875 @default.
- W3136382478 cites W2145073242 @default.
- W3136382478 cites W2145339207 @default.
- W3136382478 cites W2604427121 @default.
- W3136382478 cites W2775318398 @default.
- W3136382478 cites W2797532987 @default.
- W3136382478 cites W2947444710 @default.
- W3136382478 cites W3102476541 @default.
- W3136382478 cites W33871791 @default.
- W3136382478 doi "https://doi.org/10.48550/arxiv.2103.08317" @default.
- W3136382478 hasPublicationYear "2021" @default.
- W3136382478 type Work @default.
- W3136382478 sameAs 3136382478 @default.
- W3136382478 citedByCount "1" @default.
- W3136382478 countsByYear W31363824782023 @default.
- W3136382478 crossrefType "posted-content" @default.
- W3136382478 hasAuthorship W3136382478A5004662910 @default.
- W3136382478 hasAuthorship W3136382478A5053939434 @default.
- W3136382478 hasAuthorship W3136382478A5069363273 @default.
- W3136382478 hasAuthorship W3136382478A5087297482 @default.
- W3136382478 hasBestOaLocation W31363824781 @default.
- W3136382478 hasConcept C11413529 @default.
- W3136382478 hasConcept C119857082 @default.
- W3136382478 hasConcept C122507166 @default.
- W3136382478 hasConcept C126255220 @default.
- W3136382478 hasConcept C13280743 @default.
- W3136382478 hasConcept C154945302 @default.
- W3136382478 hasConcept C185798385 @default.
- W3136382478 hasConcept C205649164 @default.
- W3136382478 hasConcept C33923547 @default.
- W3136382478 hasConcept C41008148 @default.
- W3136382478 hasConcept C84525736 @default.
- W3136382478 hasConcept C8880873 @default.
- W3136382478 hasConceptScore W3136382478C11413529 @default.
- W3136382478 hasConceptScore W3136382478C119857082 @default.
- W3136382478 hasConceptScore W3136382478C122507166 @default.
- W3136382478 hasConceptScore W3136382478C126255220 @default.
- W3136382478 hasConceptScore W3136382478C13280743 @default.
- W3136382478 hasConceptScore W3136382478C154945302 @default.
- W3136382478 hasConceptScore W3136382478C185798385 @default.
- W3136382478 hasConceptScore W3136382478C205649164 @default.
- W3136382478 hasConceptScore W3136382478C33923547 @default.
- W3136382478 hasConceptScore W3136382478C41008148 @default.
- W3136382478 hasConceptScore W3136382478C84525736 @default.
- W3136382478 hasConceptScore W3136382478C8880873 @default.
- W3136382478 hasLocation W31363824781 @default.
- W3136382478 hasOpenAccess W3136382478 @default.
- W3136382478 hasPrimaryLocation W31363824781 @default.
- W3136382478 hasRelatedWork W1470425429 @default.
- W3136382478 hasRelatedWork W2010496772 @default.
- W3136382478 hasRelatedWork W2135854070 @default.
- W3136382478 hasRelatedWork W2158596442 @default.
- W3136382478 hasRelatedWork W2360949857 @default.
- W3136382478 hasRelatedWork W2938727909 @default.
- W3136382478 hasRelatedWork W3210877509 @default.
- W3136382478 hasRelatedWork W4249746146 @default.
- W3136382478 hasRelatedWork W4283016678 @default.
- W3136382478 hasRelatedWork W4309462577 @default.
- W3136382478 isParatext "false" @default.
- W3136382478 isRetracted "false" @default.
- W3136382478 magId "3136382478" @default.
- W3136382478 workType "article" @default.