Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136383679> ?p ?o ?g. }
- W3136383679 endingPage "1776" @default.
- W3136383679 startingPage "1776" @default.
- W3136383679 abstract "Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are “flat” molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI–kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH–π interactions and π–π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket." @default.
- W3136383679 created "2021-03-29" @default.
- W3136383679 creator A5003982948 @default.
- W3136383679 creator A5015878886 @default.
- W3136383679 creator A5054803893 @default.
- W3136383679 date "2021-03-22" @default.
- W3136383679 modified "2023-09-30" @default.
- W3136383679 title "Aromatic Rings as Molecular Determinants for the Molecular Recognition of Protein Kinase Inhibitors" @default.
- W3136383679 cites W1691796058 @default.
- W3136383679 cites W1966285532 @default.
- W3136383679 cites W1971849220 @default.
- W3136383679 cites W1975436091 @default.
- W3136383679 cites W1976262446 @default.
- W3136383679 cites W1980337077 @default.
- W3136383679 cites W1983190262 @default.
- W3136383679 cites W1983790923 @default.
- W3136383679 cites W1988091937 @default.
- W3136383679 cites W1997135238 @default.
- W3136383679 cites W1997835441 @default.
- W3136383679 cites W2002433816 @default.
- W3136383679 cites W2003288227 @default.
- W3136383679 cites W2004224330 @default.
- W3136383679 cites W2004917770 @default.
- W3136383679 cites W2007618242 @default.
- W3136383679 cites W2015015957 @default.
- W3136383679 cites W2020257412 @default.
- W3136383679 cites W2020293198 @default.
- W3136383679 cites W2022950330 @default.
- W3136383679 cites W2024454304 @default.
- W3136383679 cites W2026346565 @default.
- W3136383679 cites W2029667189 @default.
- W3136383679 cites W2030205108 @default.
- W3136383679 cites W2034919226 @default.
- W3136383679 cites W2036668937 @default.
- W3136383679 cites W2037210960 @default.
- W3136383679 cites W2041933909 @default.
- W3136383679 cites W2048631643 @default.
- W3136383679 cites W2049592631 @default.
- W3136383679 cites W2049885874 @default.
- W3136383679 cites W2054525948 @default.
- W3136383679 cites W2060630008 @default.
- W3136383679 cites W2066695841 @default.
- W3136383679 cites W2073508409 @default.
- W3136383679 cites W2074274985 @default.
- W3136383679 cites W2077804275 @default.
- W3136383679 cites W2079398727 @default.
- W3136383679 cites W2081969998 @default.
- W3136383679 cites W2083867079 @default.
- W3136383679 cites W2095100262 @default.
- W3136383679 cites W2096747776 @default.
- W3136383679 cites W2103931447 @default.
- W3136383679 cites W2105649494 @default.
- W3136383679 cites W2130479394 @default.
- W3136383679 cites W2133347001 @default.
- W3136383679 cites W2138778824 @default.
- W3136383679 cites W2148941593 @default.
- W3136383679 cites W2169303530 @default.
- W3136383679 cites W2315823315 @default.
- W3136383679 cites W2328961664 @default.
- W3136383679 cites W2571078282 @default.
- W3136383679 cites W2584077118 @default.
- W3136383679 cites W2739439285 @default.
- W3136383679 cites W2794211762 @default.
- W3136383679 cites W2794930605 @default.
- W3136383679 cites W2922159934 @default.
- W3136383679 cites W2953157513 @default.
- W3136383679 cites W3042472140 @default.
- W3136383679 cites W4210400672 @default.
- W3136383679 cites W4247904703 @default.
- W3136383679 cites W4248107770 @default.
- W3136383679 cites W643346466 @default.
- W3136383679 cites W97735725 @default.
- W3136383679 doi "https://doi.org/10.3390/molecules26061776" @default.
- W3136383679 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8005117" @default.
- W3136383679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33810025" @default.
- W3136383679 hasPublicationYear "2021" @default.
- W3136383679 type Work @default.
- W3136383679 sameAs 3136383679 @default.
- W3136383679 citedByCount "10" @default.
- W3136383679 countsByYear W31363836792021 @default.
- W3136383679 countsByYear W31363836792022 @default.
- W3136383679 crossrefType "journal-article" @default.
- W3136383679 hasAuthorship W3136383679A5003982948 @default.
- W3136383679 hasAuthorship W3136383679A5015878886 @default.
- W3136383679 hasAuthorship W3136383679A5054803893 @default.
- W3136383679 hasBestOaLocation W31363836791 @default.
- W3136383679 hasConcept C112887158 @default.
- W3136383679 hasConcept C12554922 @default.
- W3136383679 hasConcept C161624437 @default.
- W3136383679 hasConcept C178790620 @default.
- W3136383679 hasConcept C184235292 @default.
- W3136383679 hasConcept C185592680 @default.
- W3136383679 hasConcept C192386470 @default.
- W3136383679 hasConcept C32909587 @default.
- W3136383679 hasConcept C51639874 @default.
- W3136383679 hasConcept C54174078 @default.
- W3136383679 hasConcept C55493867 @default.
- W3136383679 hasConcept C86803240 @default.