Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136394806> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3136394806 abstract "Machine Learning has completely transformed health care system, which transmits medical data through IOT sensors. So it is very important to encrypt them to protect patient data. encrypting medical images from a performance perspective consumes time; hence the use of an auto encoder is essential. An auto encoder is used in this work to compress the image as a vector prior to the encryption process. The digital image passes across description function and a decoder to get back the image in the proposed work; various experiments are carried out on hyper parameters to achieve the highest outcome of the classification. The findings demonstrate that the combination of Mean Square Logarithmic Error as the loss function, ADA grad as an optimizer, two layers for the encoder, and another reverse for the decoder, RELU as the activation function generates the best auto encoder results. The combination of Mean square error (lose function), RMS prop (optimizer), three layers for the encoder and another reverse for the decoder, and RELU (activation function) has the best classification result. All the experiments with different hyper parameter has run almost very close to each other even when changing the number of layers. The running time is between 9 and 16 second for each epoch." @default.
- W3136394806 created "2021-03-29" @default.
- W3136394806 creator A5004196665 @default.
- W3136394806 creator A5006098678 @default.
- W3136394806 creator A5018463283 @default.
- W3136394806 creator A5035713467 @default.
- W3136394806 creator A5036927529 @default.
- W3136394806 creator A5082785702 @default.
- W3136394806 date "2021-03-16" @default.
- W3136394806 modified "2023-10-16" @default.
- W3136394806 title "Classification of Chest X-ray Images Using Machine Learning Techniques" @default.
- W3136394806 doi "https://doi.org/10.20944/preprints202103.0408.v1" @default.
- W3136394806 hasPublicationYear "2021" @default.
- W3136394806 type Work @default.
- W3136394806 sameAs 3136394806 @default.
- W3136394806 citedByCount "0" @default.
- W3136394806 crossrefType "posted-content" @default.
- W3136394806 hasAuthorship W3136394806A5004196665 @default.
- W3136394806 hasAuthorship W3136394806A5006098678 @default.
- W3136394806 hasAuthorship W3136394806A5018463283 @default.
- W3136394806 hasAuthorship W3136394806A5035713467 @default.
- W3136394806 hasAuthorship W3136394806A5036927529 @default.
- W3136394806 hasAuthorship W3136394806A5082785702 @default.
- W3136394806 hasBestOaLocation W31363948061 @default.
- W3136394806 hasConcept C105795698 @default.
- W3136394806 hasConcept C111919701 @default.
- W3136394806 hasConcept C11413529 @default.
- W3136394806 hasConcept C115961682 @default.
- W3136394806 hasConcept C118505674 @default.
- W3136394806 hasConcept C139945424 @default.
- W3136394806 hasConcept C14036430 @default.
- W3136394806 hasConcept C148730421 @default.
- W3136394806 hasConcept C153180895 @default.
- W3136394806 hasConcept C154945302 @default.
- W3136394806 hasConcept C31972630 @default.
- W3136394806 hasConcept C33923547 @default.
- W3136394806 hasConcept C41008148 @default.
- W3136394806 hasConcept C57273362 @default.
- W3136394806 hasConcept C78458016 @default.
- W3136394806 hasConcept C86803240 @default.
- W3136394806 hasConcept C98045186 @default.
- W3136394806 hasConceptScore W3136394806C105795698 @default.
- W3136394806 hasConceptScore W3136394806C111919701 @default.
- W3136394806 hasConceptScore W3136394806C11413529 @default.
- W3136394806 hasConceptScore W3136394806C115961682 @default.
- W3136394806 hasConceptScore W3136394806C118505674 @default.
- W3136394806 hasConceptScore W3136394806C139945424 @default.
- W3136394806 hasConceptScore W3136394806C14036430 @default.
- W3136394806 hasConceptScore W3136394806C148730421 @default.
- W3136394806 hasConceptScore W3136394806C153180895 @default.
- W3136394806 hasConceptScore W3136394806C154945302 @default.
- W3136394806 hasConceptScore W3136394806C31972630 @default.
- W3136394806 hasConceptScore W3136394806C33923547 @default.
- W3136394806 hasConceptScore W3136394806C41008148 @default.
- W3136394806 hasConceptScore W3136394806C57273362 @default.
- W3136394806 hasConceptScore W3136394806C78458016 @default.
- W3136394806 hasConceptScore W3136394806C86803240 @default.
- W3136394806 hasConceptScore W3136394806C98045186 @default.
- W3136394806 hasLocation W31363948061 @default.
- W3136394806 hasOpenAccess W3136394806 @default.
- W3136394806 hasPrimaryLocation W31363948061 @default.
- W3136394806 hasRelatedWork W1950712214 @default.
- W3136394806 hasRelatedWork W2005185696 @default.
- W3136394806 hasRelatedWork W2092957489 @default.
- W3136394806 hasRelatedWork W2130228941 @default.
- W3136394806 hasRelatedWork W2161229648 @default.
- W3136394806 hasRelatedWork W2235753890 @default.
- W3136394806 hasRelatedWork W2355956742 @default.
- W3136394806 hasRelatedWork W2993674027 @default.
- W3136394806 hasRelatedWork W219228830 @default.
- W3136394806 hasRelatedWork W2971052914 @default.
- W3136394806 isParatext "false" @default.
- W3136394806 isRetracted "false" @default.
- W3136394806 magId "3136394806" @default.
- W3136394806 workType "article" @default.