Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136398057> ?p ?o ?g. }
- W3136398057 endingPage "49153" @default.
- W3136398057 startingPage "49141" @default.
- W3136398057 abstract "Recently, there has been rapid growth in the number of people who own companion pets (cats and dogs) due to low birth rates, an increasingly aging population, and an increasing number of single-person households. This trend has resulted in a growing interest in problems requiring solutions, such as missing pets and false insurance claims. Traditional non-biometric-based methods cannot address these problems. This paper proposes a novel deep-learning model that can extract discriminative features through dog nose-print patterns for individual identification. We present a robust baseline for how individual dogs can be identified. The proposed dog nose network (DNNet) is a convolutional neural network (CNN)-based Siamese network structure comprising feature extraction and self-attention modules. Moreover, there is no need for a separate scanning device because it uses popular mobile devices to acquire the dataset. Besides high recognition performance, the proposed method also ensures simplicity and efficiency. The proposed method achieves better recognition performance than state-of-the-art methods for the collected dog nose-print dataset. It achieves recognition performance superior to state-of-the-art methods for the collected dog nose-print dataset. Using multiple datasets through cross-validation, we acquired an average identification accuracy of 98.972% with the Rank-1 approach. Additional performance benefits were demonstrated through the receiver operating characteristic (ROC) curve, t-distributed stochastic neighbor embedding (t-SNE), and confusion matrix." @default.
- W3136398057 created "2021-03-29" @default.
- W3136398057 creator A5015739530 @default.
- W3136398057 creator A5031212894 @default.
- W3136398057 creator A5039741009 @default.
- W3136398057 date "2021-01-01" @default.
- W3136398057 modified "2023-09-25" @default.
- W3136398057 title "Dog Nose-Print Identification Using Deep Neural Networks" @default.
- W3136398057 cites W1903029394 @default.
- W3136398057 cites W2024591404 @default.
- W3136398057 cites W2032593695 @default.
- W3136398057 cites W2037324976 @default.
- W3136398057 cites W2038105638 @default.
- W3136398057 cites W2113325037 @default.
- W3136398057 cites W2138621090 @default.
- W3136398057 cites W2151103935 @default.
- W3136398057 cites W2158096215 @default.
- W3136398057 cites W2163352848 @default.
- W3136398057 cites W2177274842 @default.
- W3136398057 cites W2194775991 @default.
- W3136398057 cites W2212303891 @default.
- W3136398057 cites W2275769499 @default.
- W3136398057 cites W2288632406 @default.
- W3136398057 cites W2312795231 @default.
- W3136398057 cites W2556622144 @default.
- W3136398057 cites W2583064257 @default.
- W3136398057 cites W2752782242 @default.
- W3136398057 cites W2765230784 @default.
- W3136398057 cites W2766739066 @default.
- W3136398057 cites W2781155685 @default.
- W3136398057 cites W2790592140 @default.
- W3136398057 cites W2791690647 @default.
- W3136398057 cites W2798307152 @default.
- W3136398057 cites W2884585870 @default.
- W3136398057 cites W2955058313 @default.
- W3136398057 cites W2962837037 @default.
- W3136398057 cites W2963091558 @default.
- W3136398057 cites W2963446712 @default.
- W3136398057 cites W2969728738 @default.
- W3136398057 cites W2969985801 @default.
- W3136398057 cites W2970070842 @default.
- W3136398057 cites W2980649243 @default.
- W3136398057 cites W2982718924 @default.
- W3136398057 cites W2989466510 @default.
- W3136398057 cites W3000440540 @default.
- W3136398057 cites W3003378205 @default.
- W3136398057 cites W3006768287 @default.
- W3136398057 cites W3007776323 @default.
- W3136398057 cites W3089070259 @default.
- W3136398057 doi "https://doi.org/10.1109/access.2021.3068517" @default.
- W3136398057 hasPublicationYear "2021" @default.
- W3136398057 type Work @default.
- W3136398057 sameAs 3136398057 @default.
- W3136398057 citedByCount "2" @default.
- W3136398057 countsByYear W31363980572021 @default.
- W3136398057 countsByYear W31363980572023 @default.
- W3136398057 crossrefType "journal-article" @default.
- W3136398057 hasAuthorship W3136398057A5015739530 @default.
- W3136398057 hasAuthorship W3136398057A5031212894 @default.
- W3136398057 hasAuthorship W3136398057A5039741009 @default.
- W3136398057 hasBestOaLocation W31363980571 @default.
- W3136398057 hasConcept C108583219 @default.
- W3136398057 hasConcept C112356035 @default.
- W3136398057 hasConcept C116834253 @default.
- W3136398057 hasConcept C119857082 @default.
- W3136398057 hasConcept C138602881 @default.
- W3136398057 hasConcept C138885662 @default.
- W3136398057 hasConcept C144024400 @default.
- W3136398057 hasConcept C149923435 @default.
- W3136398057 hasConcept C153180895 @default.
- W3136398057 hasConcept C154945302 @default.
- W3136398057 hasConcept C184297639 @default.
- W3136398057 hasConcept C2776401178 @default.
- W3136398057 hasConcept C2908647359 @default.
- W3136398057 hasConcept C41008148 @default.
- W3136398057 hasConcept C41895202 @default.
- W3136398057 hasConcept C50644808 @default.
- W3136398057 hasConcept C52622490 @default.
- W3136398057 hasConcept C58471807 @default.
- W3136398057 hasConcept C59822182 @default.
- W3136398057 hasConcept C81363708 @default.
- W3136398057 hasConcept C86803240 @default.
- W3136398057 hasConcept C97931131 @default.
- W3136398057 hasConceptScore W3136398057C108583219 @default.
- W3136398057 hasConceptScore W3136398057C112356035 @default.
- W3136398057 hasConceptScore W3136398057C116834253 @default.
- W3136398057 hasConceptScore W3136398057C119857082 @default.
- W3136398057 hasConceptScore W3136398057C138602881 @default.
- W3136398057 hasConceptScore W3136398057C138885662 @default.
- W3136398057 hasConceptScore W3136398057C144024400 @default.
- W3136398057 hasConceptScore W3136398057C149923435 @default.
- W3136398057 hasConceptScore W3136398057C153180895 @default.
- W3136398057 hasConceptScore W3136398057C154945302 @default.
- W3136398057 hasConceptScore W3136398057C184297639 @default.
- W3136398057 hasConceptScore W3136398057C2776401178 @default.
- W3136398057 hasConceptScore W3136398057C2908647359 @default.
- W3136398057 hasConceptScore W3136398057C41008148 @default.
- W3136398057 hasConceptScore W3136398057C41895202 @default.