Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136404701> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3136404701 abstract "Graph Neural Networks are a unique type of Deep Learning models that have a capability to exploit an explicitly stated structure of data representation. By design they carry a strong relational inductive bias, which is a set of assumptions that makes the algorithm prioritize some solutions over another, independent of observed data. This makes the method especially interesting for applications to problems, that are naturally relation-centric, or in which local interactions between features are the main value of interest. The presented research case, aims to explore GNN potential in application to an Ocean Acoustics problem. Using the geometric ray-tracing algorithm, BELLHOP, a large number of underwater sound propagation scenarios was simulated. Each scenario is described by a limited set of parameters and a Sound Speed Profile function. The latter, acting as a guideline for estimating paths of rays travelling through a water column, has a critical impact on sound propagation mode. For the data-driven model to effectively capture the acoustic phenomena, requires a mean of representing interactions in very scarce feature space and especially with respect to the nonlinear function representation of the sound speed. First, the solution of the problem is approached with a traditional Machine Learning model, a decision-tree algorithm XGBoost. In effect, some important characteristics of the collected data sample are revealed. Moreover, by testing inference capacity of the database with a reliable algorithm, gives an estimate of the properties of the Sound Speed Profile that have the biggest impact on sound propagation. It is proven, that with carefully engineered features, that include a degree of added expert knowledge, a standard model can achieve good accuracy of prediction. Secondly, a Knowledge Graph is designed to represent the whole context of explicitly stated expert knowledge, using concepts from Hydroacoustics. They are encoded in a form of relational structure connecting actual features of the data into logical categories. In this representation it can be used by the Knowledge Graph Convolutional Network model designed for the problem. A range of tests performed on KGCN proves that using a Graph Neural Network can be feasible to solve the problem, however it also reveals a range of issues regarding model's capability to handle the complexity of problem statement." @default.
- W3136404701 created "2021-03-29" @default.
- W3136404701 creator A5009750919 @default.
- W3136404701 date "2020-01-01" @default.
- W3136404701 modified "2023-09-24" @default.
- W3136404701 title "Design of a Graph Neural Network: to predict the optimal resolution of the Sonar Performance Model" @default.
- W3136404701 hasPublicationYear "2020" @default.
- W3136404701 type Work @default.
- W3136404701 sameAs 3136404701 @default.
- W3136404701 citedByCount "0" @default.
- W3136404701 crossrefType "journal-article" @default.
- W3136404701 hasAuthorship W3136404701A5009750919 @default.
- W3136404701 hasConcept C11413529 @default.
- W3136404701 hasConcept C132525143 @default.
- W3136404701 hasConcept C154945302 @default.
- W3136404701 hasConcept C17744445 @default.
- W3136404701 hasConcept C199539241 @default.
- W3136404701 hasConcept C2776214188 @default.
- W3136404701 hasConcept C2776359362 @default.
- W3136404701 hasConcept C41008148 @default.
- W3136404701 hasConcept C50644808 @default.
- W3136404701 hasConcept C555745239 @default.
- W3136404701 hasConcept C80444323 @default.
- W3136404701 hasConcept C94625758 @default.
- W3136404701 hasConceptScore W3136404701C11413529 @default.
- W3136404701 hasConceptScore W3136404701C132525143 @default.
- W3136404701 hasConceptScore W3136404701C154945302 @default.
- W3136404701 hasConceptScore W3136404701C17744445 @default.
- W3136404701 hasConceptScore W3136404701C199539241 @default.
- W3136404701 hasConceptScore W3136404701C2776214188 @default.
- W3136404701 hasConceptScore W3136404701C2776359362 @default.
- W3136404701 hasConceptScore W3136404701C41008148 @default.
- W3136404701 hasConceptScore W3136404701C50644808 @default.
- W3136404701 hasConceptScore W3136404701C555745239 @default.
- W3136404701 hasConceptScore W3136404701C80444323 @default.
- W3136404701 hasConceptScore W3136404701C94625758 @default.
- W3136404701 hasLocation W31364047011 @default.
- W3136404701 hasOpenAccess W3136404701 @default.
- W3136404701 hasPrimaryLocation W31364047011 @default.
- W3136404701 hasRelatedWork W1508860170 @default.
- W3136404701 hasRelatedWork W1613954426 @default.
- W3136404701 hasRelatedWork W1906763645 @default.
- W3136404701 hasRelatedWork W192984710 @default.
- W3136404701 hasRelatedWork W2011702720 @default.
- W3136404701 hasRelatedWork W2069202742 @default.
- W3136404701 hasRelatedWork W2116771001 @default.
- W3136404701 hasRelatedWork W2390564482 @default.
- W3136404701 hasRelatedWork W2797520986 @default.
- W3136404701 hasRelatedWork W2799707712 @default.
- W3136404701 hasRelatedWork W2915007926 @default.
- W3136404701 hasRelatedWork W2916044303 @default.
- W3136404701 hasRelatedWork W3034596007 @default.
- W3136404701 hasRelatedWork W3090285401 @default.
- W3136404701 hasRelatedWork W3108677582 @default.
- W3136404701 hasRelatedWork W3116056877 @default.
- W3136404701 hasRelatedWork W3138373115 @default.
- W3136404701 hasRelatedWork W3181131484 @default.
- W3136404701 hasRelatedWork W3200106268 @default.
- W3136404701 hasRelatedWork W636966223 @default.
- W3136404701 isParatext "false" @default.
- W3136404701 isRetracted "false" @default.
- W3136404701 magId "3136404701" @default.
- W3136404701 workType "article" @default.