Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136407982> ?p ?o ?g. }
- W3136407982 endingPage "1527" @default.
- W3136407982 startingPage "1518" @default.
- W3136407982 abstract "By using machine learning, our study aimed to build a model to predict risk and time to total knee replacement (TKR) of an osteoarthritic knee.Features were from the Osteoarthritis Initiative (OAI) cohort at baseline. Using the lasso method for variable selection in the Cox regression model, we identified the 10 most important characteristics among 1,107 features. The prognostic power of the selected features was assessed by the Kaplan-Meier method and applied to 7 machine learning methods: Cox, DeepSurv, random forests algorithm, linear/kernel support vector machine (SVM), and linear/neural multi-task logistic regression models. As some of the 10 first-found features included similar radiographic measurements, we further looked at using the least number of features without compromising the accuracy of the model. Prediction performance was assessed by the concordance index, Brier score, and time-dependent area under the curve (AUC).Ten features were identified and included radiographs, bone marrow lesions of the medial condyle on magnetic resonance imaging, hyaluronic acid injection, performance measure, medical history, and knee-related symptoms. The methodologies Cox, DeepSurv, and linear SVM demonstrated the highest accuracy (concordance index scores of 0.85, Brier score of 0.02, and an AUC of 0.87). DeepSurv was chosen to build the prediction model to estimate the time to TKR for a given knee. Moreover, we were able to decrease the features to only 3 and maintain the high accuracy (concordance index of 0.85, Brier score of 0.02, and AUC of 0.86), which included bone marrow lesions, Kellgren/Lawrence grade, and knee-related symptoms, to predict risk and time of a TKR event.For the first time, we developed a model using the OAI cohort to predict with high accuracy if a given osteoarthritic knee would require TKR, when a TKR would be required, and who would likely progress fast toward this event." @default.
- W3136407982 created "2021-03-29" @default.
- W3136407982 creator A5011631887 @default.
- W3136407982 creator A5012113953 @default.
- W3136407982 creator A5026711692 @default.
- W3136407982 creator A5053214598 @default.
- W3136407982 creator A5070507616 @default.
- W3136407982 creator A5071487081 @default.
- W3136407982 date "2021-08-26" @default.
- W3136407982 modified "2023-10-18" @default.
- W3136407982 title "Machine Learning–Based Individualized Survival Prediction Model for Total Knee Replacement in Osteoarthritis: Data From the Osteoarthritis Initiative" @default.
- W3136407982 cites W1257569579 @default.
- W3136407982 cites W1586221717 @default.
- W3136407982 cites W1984402863 @default.
- W3136407982 cites W2046260446 @default.
- W3136407982 cites W2081380988 @default.
- W3136407982 cites W2097785638 @default.
- W3136407982 cites W2109441608 @default.
- W3136407982 cites W2110814621 @default.
- W3136407982 cites W2119527637 @default.
- W3136407982 cites W2122913203 @default.
- W3136407982 cites W2128831972 @default.
- W3136407982 cites W2162085535 @default.
- W3136407982 cites W2168887237 @default.
- W3136407982 cites W2210874914 @default.
- W3136407982 cites W2253579545 @default.
- W3136407982 cites W2344222116 @default.
- W3136407982 cites W2464160825 @default.
- W3136407982 cites W2567606864 @default.
- W3136407982 cites W2588370737 @default.
- W3136407982 cites W2611463039 @default.
- W3136407982 cites W2753919178 @default.
- W3136407982 cites W2763901799 @default.
- W3136407982 cites W2768109521 @default.
- W3136407982 cites W2768755567 @default.
- W3136407982 cites W2789198562 @default.
- W3136407982 cites W2789487454 @default.
- W3136407982 cites W2809657717 @default.
- W3136407982 cites W2885178909 @default.
- W3136407982 cites W2902433159 @default.
- W3136407982 cites W2912366334 @default.
- W3136407982 cites W2943162041 @default.
- W3136407982 cites W2998556046 @default.
- W3136407982 cites W3022398556 @default.
- W3136407982 cites W3036485623 @default.
- W3136407982 cites W3049101715 @default.
- W3136407982 cites W4294541781 @default.
- W3136407982 doi "https://doi.org/10.1002/acr.24601" @default.
- W3136407982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33749148" @default.
- W3136407982 hasPublicationYear "2021" @default.
- W3136407982 type Work @default.
- W3136407982 sameAs 3136407982 @default.
- W3136407982 citedByCount "15" @default.
- W3136407982 countsByYear W31364079822021 @default.
- W3136407982 countsByYear W31364079822022 @default.
- W3136407982 countsByYear W31364079822023 @default.
- W3136407982 crossrefType "journal-article" @default.
- W3136407982 hasAuthorship W3136407982A5011631887 @default.
- W3136407982 hasAuthorship W3136407982A5012113953 @default.
- W3136407982 hasAuthorship W3136407982A5026711692 @default.
- W3136407982 hasAuthorship W3136407982A5053214598 @default.
- W3136407982 hasAuthorship W3136407982A5070507616 @default.
- W3136407982 hasAuthorship W3136407982A5071487081 @default.
- W3136407982 hasConcept C119857082 @default.
- W3136407982 hasConcept C12267149 @default.
- W3136407982 hasConcept C126322002 @default.
- W3136407982 hasConcept C136764020 @default.
- W3136407982 hasConcept C142724271 @default.
- W3136407982 hasConcept C151956035 @default.
- W3136407982 hasConcept C154945302 @default.
- W3136407982 hasConcept C160798450 @default.
- W3136407982 hasConcept C204787440 @default.
- W3136407982 hasConcept C2776164576 @default.
- W3136407982 hasConcept C35405484 @default.
- W3136407982 hasConcept C37616216 @default.
- W3136407982 hasConcept C41008148 @default.
- W3136407982 hasConcept C50382708 @default.
- W3136407982 hasConcept C71924100 @default.
- W3136407982 hasConceptScore W3136407982C119857082 @default.
- W3136407982 hasConceptScore W3136407982C12267149 @default.
- W3136407982 hasConceptScore W3136407982C126322002 @default.
- W3136407982 hasConceptScore W3136407982C136764020 @default.
- W3136407982 hasConceptScore W3136407982C142724271 @default.
- W3136407982 hasConceptScore W3136407982C151956035 @default.
- W3136407982 hasConceptScore W3136407982C154945302 @default.
- W3136407982 hasConceptScore W3136407982C160798450 @default.
- W3136407982 hasConceptScore W3136407982C204787440 @default.
- W3136407982 hasConceptScore W3136407982C2776164576 @default.
- W3136407982 hasConceptScore W3136407982C35405484 @default.
- W3136407982 hasConceptScore W3136407982C37616216 @default.
- W3136407982 hasConceptScore W3136407982C41008148 @default.
- W3136407982 hasConceptScore W3136407982C50382708 @default.
- W3136407982 hasConceptScore W3136407982C71924100 @default.
- W3136407982 hasIssue "10" @default.
- W3136407982 hasLocation W31364079821 @default.
- W3136407982 hasLocation W31364079822 @default.
- W3136407982 hasOpenAccess W3136407982 @default.
- W3136407982 hasPrimaryLocation W31364079821 @default.