Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136408497> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3136408497 endingPage "89" @default.
- W3136408497 startingPage "78" @default.
- W3136408497 abstract "We propose a multi-task learning approach to reducing text complexity which combines text summarization and simplification methods. For the purposes of this research, two datasets were used: the Simple English Wikipedia dataset for simplification and the CNN/DailyMail dataset for summarization. We describe several experiments with reducing text complexity. One experiment consists in first training the model on summarization data, then fine-tuning it on simplification data. Another experiment involves training the model on both datasets simultaneously while augmenting source texts with a task-specific tag that shows the model which task (summarization or simplification) needs to be performed on a given text. Models with a similar architecture were also trained on each dataset separately for comparison. Our experiments have shown that the multi-task learning approach with task-specific tags is more effective than the fine-tuning approach, and the models trained for both tasks simultaneously can perform as good at each of them as the models that were trained only for that specific task." @default.
- W3136408497 created "2021-03-29" @default.
- W3136408497 creator A5011548871 @default.
- W3136408497 creator A5040450308 @default.
- W3136408497 date "2021-01-01" @default.
- W3136408497 modified "2023-09-23" @default.
- W3136408497 title "A Multi-task Learning Approach to Text Simplification" @default.
- W3136408497 cites W1561362876 @default.
- W3136408497 cites W1746111881 @default.
- W3136408497 cites W2063490579 @default.
- W3136408497 cites W2083245912 @default.
- W3136408497 cites W2317879529 @default.
- W3136408497 cites W2550821151 @default.
- W3136408497 cites W2551704653 @default.
- W3136408497 cites W2605243085 @default.
- W3136408497 cites W2606974598 @default.
- W3136408497 cites W2889518897 @default.
- W3136408497 cites W2890771450 @default.
- W3136408497 cites W2927213876 @default.
- W3136408497 cites W2952138241 @default.
- W3136408497 cites W2963023793 @default.
- W3136408497 cites W2963212250 @default.
- W3136408497 cites W2963929190 @default.
- W3136408497 cites W2970561469 @default.
- W3136408497 cites W4211149393 @default.
- W3136408497 cites W4241597375 @default.
- W3136408497 doi "https://doi.org/10.1007/978-3-030-71214-3_7" @default.
- W3136408497 hasPublicationYear "2021" @default.
- W3136408497 type Work @default.
- W3136408497 sameAs 3136408497 @default.
- W3136408497 citedByCount "0" @default.
- W3136408497 crossrefType "book-chapter" @default.
- W3136408497 hasAuthorship W3136408497A5011548871 @default.
- W3136408497 hasAuthorship W3136408497A5040450308 @default.
- W3136408497 hasBestOaLocation W31364084972 @default.
- W3136408497 hasConcept C111472728 @default.
- W3136408497 hasConcept C119857082 @default.
- W3136408497 hasConcept C138885662 @default.
- W3136408497 hasConcept C154945302 @default.
- W3136408497 hasConcept C162324750 @default.
- W3136408497 hasConcept C170858558 @default.
- W3136408497 hasConcept C187736073 @default.
- W3136408497 hasConcept C204321447 @default.
- W3136408497 hasConcept C23123220 @default.
- W3136408497 hasConcept C2776145971 @default.
- W3136408497 hasConcept C2780451532 @default.
- W3136408497 hasConcept C2780586882 @default.
- W3136408497 hasConcept C28006648 @default.
- W3136408497 hasConcept C41008148 @default.
- W3136408497 hasConceptScore W3136408497C111472728 @default.
- W3136408497 hasConceptScore W3136408497C119857082 @default.
- W3136408497 hasConceptScore W3136408497C138885662 @default.
- W3136408497 hasConceptScore W3136408497C154945302 @default.
- W3136408497 hasConceptScore W3136408497C162324750 @default.
- W3136408497 hasConceptScore W3136408497C170858558 @default.
- W3136408497 hasConceptScore W3136408497C187736073 @default.
- W3136408497 hasConceptScore W3136408497C204321447 @default.
- W3136408497 hasConceptScore W3136408497C23123220 @default.
- W3136408497 hasConceptScore W3136408497C2776145971 @default.
- W3136408497 hasConceptScore W3136408497C2780451532 @default.
- W3136408497 hasConceptScore W3136408497C2780586882 @default.
- W3136408497 hasConceptScore W3136408497C28006648 @default.
- W3136408497 hasConceptScore W3136408497C41008148 @default.
- W3136408497 hasLocation W31364084971 @default.
- W3136408497 hasLocation W31364084972 @default.
- W3136408497 hasOpenAccess W3136408497 @default.
- W3136408497 hasPrimaryLocation W31364084971 @default.
- W3136408497 hasRelatedWork W132250100 @default.
- W3136408497 hasRelatedWork W2093597205 @default.
- W3136408497 hasRelatedWork W2099984331 @default.
- W3136408497 hasRelatedWork W2389846579 @default.
- W3136408497 hasRelatedWork W2392495745 @default.
- W3136408497 hasRelatedWork W2747680751 @default.
- W3136408497 hasRelatedWork W2981651290 @default.
- W3136408497 hasRelatedWork W3136408497 @default.
- W3136408497 hasRelatedWork W4226315942 @default.
- W3136408497 hasRelatedWork W4312444067 @default.
- W3136408497 isParatext "false" @default.
- W3136408497 isRetracted "false" @default.
- W3136408497 magId "3136408497" @default.
- W3136408497 workType "book-chapter" @default.