Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136435360> ?p ?o ?g. }
- W3136435360 endingPage "4738" @default.
- W3136435360 startingPage "4712" @default.
- W3136435360 abstract "Seagrass provides numerous valuable ecosystem services across a wide range of climatic regions. However, in terms of area and habitat, this resource is in decline globally and there is an urgent need for accurate mapping of extant meadows and biomass to support sustainable seagrass blue carbon conservation and management. This study develops a novel method for a binary mapping of seagrass distribution and estimating seagrass above-ground biomass (AGB) by applying a suite of advanced machine learning (ML) algorithms combined with and without a metaheuristic optimization approach (particle swarm optimization – PSO) to various combinations of multispectral (Sentinel-2) and synthetic aperture radar (Sentinel-1) remote sensing data. Our results reveal that the Sentinel-1 data has potential for the binary mapping of seagrass meadows using an extreme gradient boosting (XGB) model (scores of precision (P) = 0.82, recall (R) = 0.90, and F1 = 0.86) but is less effective at estimating AGB. The optimal method for estimation of AGB used both Sentinel-1 and Sentinel-2 imagery, the XGB model, and PSO optimization (coefficient of determination (R2) = 0.75, root mean squared error (RMSE) = 0.35, Akaike information criteria (AIC) = 24.80, Bayesian information criteria (BIC) = 44.70). Our findings contribute novel and advanced methods for seagrass detection and improvement of AGB estimation, which are fast and reliable, use open-source data and software and should be easily applicable to intertidal zones across many regions of the world." @default.
- W3136435360 created "2021-03-29" @default.
- W3136435360 creator A5010490297 @default.
- W3136435360 creator A5020793898 @default.
- W3136435360 creator A5035614978 @default.
- W3136435360 creator A5091820755 @default.
- W3136435360 date "2021-03-23" @default.
- W3136435360 modified "2023-10-03" @default.
- W3136435360 title "The use of radar and optical satellite imagery combined with advanced machine learning and metaheuristic optimization techniques to detect and quantify above ground biomass of intertidal seagrass in a New Zealand estuary" @default.
- W3136435360 cites W1529353130 @default.
- W3136435360 cites W1795779198 @default.
- W3136435360 cites W1964217023 @default.
- W3136435360 cites W2000613913 @default.
- W3136435360 cites W2019448438 @default.
- W3136435360 cites W2025037046 @default.
- W3136435360 cites W2032202767 @default.
- W3136435360 cites W2056482671 @default.
- W3136435360 cites W2058312673 @default.
- W3136435360 cites W2062087312 @default.
- W3136435360 cites W2063623478 @default.
- W3136435360 cites W2063907334 @default.
- W3136435360 cites W2071501094 @default.
- W3136435360 cites W2077647069 @default.
- W3136435360 cites W2078099285 @default.
- W3136435360 cites W2080441468 @default.
- W3136435360 cites W2080767771 @default.
- W3136435360 cites W2088794999 @default.
- W3136435360 cites W2090836631 @default.
- W3136435360 cites W2094677081 @default.
- W3136435360 cites W2094785904 @default.
- W3136435360 cites W2111947859 @default.
- W3136435360 cites W2116395914 @default.
- W3136435360 cites W2124823351 @default.
- W3136435360 cites W2126699720 @default.
- W3136435360 cites W2133741276 @default.
- W3136435360 cites W2142635246 @default.
- W3136435360 cites W2146667066 @default.
- W3136435360 cites W2150757437 @default.
- W3136435360 cites W2152195021 @default.
- W3136435360 cites W2155632266 @default.
- W3136435360 cites W2167488079 @default.
- W3136435360 cites W2167904834 @default.
- W3136435360 cites W2168175751 @default.
- W3136435360 cites W2261059368 @default.
- W3136435360 cites W2289841726 @default.
- W3136435360 cites W2305395239 @default.
- W3136435360 cites W2322140623 @default.
- W3136435360 cites W2530322545 @default.
- W3136435360 cites W2573137292 @default.
- W3136435360 cites W2617056706 @default.
- W3136435360 cites W2736837310 @default.
- W3136435360 cites W2749044588 @default.
- W3136435360 cites W2766701031 @default.
- W3136435360 cites W2791211425 @default.
- W3136435360 cites W2794997102 @default.
- W3136435360 cites W2796986051 @default.
- W3136435360 cites W2799462250 @default.
- W3136435360 cites W2896968076 @default.
- W3136435360 cites W2899686131 @default.
- W3136435360 cites W2900284876 @default.
- W3136435360 cites W2904557656 @default.
- W3136435360 cites W2906106297 @default.
- W3136435360 cites W2906799152 @default.
- W3136435360 cites W2911964244 @default.
- W3136435360 cites W2912816375 @default.
- W3136435360 cites W2916530819 @default.
- W3136435360 cites W2919979744 @default.
- W3136435360 cites W2921674639 @default.
- W3136435360 cites W2922382416 @default.
- W3136435360 cites W2936331018 @default.
- W3136435360 cites W2941114027 @default.
- W3136435360 cites W2952411786 @default.
- W3136435360 cites W2971982243 @default.
- W3136435360 cites W2980382960 @default.
- W3136435360 cites W2994551303 @default.
- W3136435360 cites W2998047709 @default.
- W3136435360 cites W3001958130 @default.
- W3136435360 cites W3002117632 @default.
- W3136435360 cites W3002639097 @default.
- W3136435360 cites W3009990201 @default.
- W3136435360 cites W3014760905 @default.
- W3136435360 cites W3020552235 @default.
- W3136435360 cites W3021467062 @default.
- W3136435360 cites W3025622517 @default.
- W3136435360 cites W3026386751 @default.
- W3136435360 cites W3029888544 @default.
- W3136435360 cites W3035803741 @default.
- W3136435360 cites W3045597383 @default.
- W3136435360 cites W3045978356 @default.
- W3136435360 cites W3102476541 @default.
- W3136435360 cites W3116354113 @default.
- W3136435360 doi "https://doi.org/10.1080/01431161.2021.1899335" @default.
- W3136435360 hasPublicationYear "2021" @default.
- W3136435360 type Work @default.
- W3136435360 sameAs 3136435360 @default.
- W3136435360 citedByCount "20" @default.
- W3136435360 countsByYear W31364353602021 @default.
- W3136435360 countsByYear W31364353602022 @default.