Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136443090> ?p ?o ?g. }
- W3136443090 endingPage "116838" @default.
- W3136443090 startingPage "116838" @default.
- W3136443090 abstract "Convective heat transfer heavily affects both efficiency and reliability in many industrial problems. For this reason, its proper estimation is mandatory since the early design stage. 3D-CFD simulations represent a powerful tool for the prediction of the heat fluxes. This is even more true considering that typical operating conditions of many applications prevent experimental characterization. As for 3D-CFD computations, the combination of Reynolds Averaged Navier Stokes (RANS) turbulence modeling and high-Reynolds wall treatment is still widely diffused in the industrial practice, to save both computational cost and time. The adoption of a high-Reynolds wall treatment based on wall functions, which permits the use of relatively coarse near-wall grids, implies specific restrictions for the height of the near-wall cell layer. In particular, the first cell-centroid must be placed in the fully turbulent (log-) region of the boundary layer. The main drawback of a cell-centroid falling into the viscous sub-layer consists in a huge overestimation of both wall shear stress and wall heat transfer. The lower the y+ is (i.e. the lower the wall distance is), the higher the predicted values are. As for many other industrial applications, Internal Combustion Engine (ICE) in-cylinder simulations remarkably suffer from the presence of low y+ values in the computational domain, mostly at part-loads and low-revving speeds. At specific operating points, such as idle conditions, it is nearly impossible to maintain y+ in the log-region, even during the compression stroke, when the velocity field should allow the dimensionless distance to reach the highest values in the engine cycle. To avoid such undesired overestimations of shear stress and heat transfer, a modified formulation of the thermal law of the wall (T+) to be used in the viscous sub-layer is proposed in the present paper. To further reduce the grid-dependency of the high-Reynolds wall treatment, a similar modification is applied to the velocity wall function (u+). Resulting wall heat flux and wall shear stress are shown to be grid-independent, at least for y+>3. The proposed alternative modeling for u+ inside the viscous sub-layer is validated in terms of flow field against experimental Laser-Doppler Anemometry (LDA) data and Direct Numerical Simulation (DNS) results. Despite the present analysis focuses on in-cylinder simulations, the alternative u+ and T+ formulations can be applied to any complex flow. Furthermore, the proposed modified laws of the wall can be adopted in conjunction with any wall-function-based heat transfer model." @default.
- W3136443090 created "2021-03-29" @default.
- W3136443090 creator A5021096475 @default.
- W3136443090 creator A5057957652 @default.
- W3136443090 creator A5067020927 @default.
- W3136443090 creator A5070542988 @default.
- W3136443090 date "2021-05-01" @default.
- W3136443090 modified "2023-10-11" @default.
- W3136443090 title "Towards grid-independent 3D-CFD wall-function-based heat transfer models for complex industrial flows with focus on in-cylinder simulations" @default.
- W3136443090 cites W1045904227 @default.
- W3136443090 cites W1480733332 @default.
- W3136443090 cites W1495333193 @default.
- W3136443090 cites W1561940639 @default.
- W3136443090 cites W1966447286 @default.
- W3136443090 cites W1981401379 @default.
- W3136443090 cites W1987756101 @default.
- W3136443090 cites W1990456272 @default.
- W3136443090 cites W2003935561 @default.
- W3136443090 cites W2023291667 @default.
- W3136443090 cites W2028916476 @default.
- W3136443090 cites W2029179730 @default.
- W3136443090 cites W2029682680 @default.
- W3136443090 cites W2035370880 @default.
- W3136443090 cites W2053031007 @default.
- W3136443090 cites W2065888392 @default.
- W3136443090 cites W2074083213 @default.
- W3136443090 cites W2089008475 @default.
- W3136443090 cites W2107394024 @default.
- W3136443090 cites W2113738128 @default.
- W3136443090 cites W2132358645 @default.
- W3136443090 cites W2144007871 @default.
- W3136443090 cites W2199819698 @default.
- W3136443090 cites W2210820475 @default.
- W3136443090 cites W2220736046 @default.
- W3136443090 cites W2300754909 @default.
- W3136443090 cites W2302444151 @default.
- W3136443090 cites W2480561403 @default.
- W3136443090 cites W2567041174 @default.
- W3136443090 cites W2571586424 @default.
- W3136443090 cites W2586533343 @default.
- W3136443090 cites W2587038809 @default.
- W3136443090 cites W2612732602 @default.
- W3136443090 cites W2688353334 @default.
- W3136443090 cites W2706018404 @default.
- W3136443090 cites W2735725410 @default.
- W3136443090 cites W2748049539 @default.
- W3136443090 cites W2752166239 @default.
- W3136443090 cites W2767263318 @default.
- W3136443090 cites W2770065695 @default.
- W3136443090 cites W2771628069 @default.
- W3136443090 cites W2791917325 @default.
- W3136443090 cites W2795500706 @default.
- W3136443090 cites W2796289283 @default.
- W3136443090 cites W2910676851 @default.
- W3136443090 cites W2912098177 @default.
- W3136443090 cites W2912344171 @default.
- W3136443090 cites W2942665257 @default.
- W3136443090 cites W2944031238 @default.
- W3136443090 cites W2953969620 @default.
- W3136443090 cites W2964078505 @default.
- W3136443090 cites W2994307858 @default.
- W3136443090 cites W2994642288 @default.
- W3136443090 cites W2994872311 @default.
- W3136443090 cites W2994895917 @default.
- W3136443090 cites W2995924400 @default.
- W3136443090 cites W2996237861 @default.
- W3136443090 cites W3011822623 @default.
- W3136443090 cites W3016977431 @default.
- W3136443090 doi "https://doi.org/10.1016/j.applthermaleng.2021.116838" @default.
- W3136443090 hasPublicationYear "2021" @default.
- W3136443090 type Work @default.
- W3136443090 sameAs 3136443090 @default.
- W3136443090 citedByCount "16" @default.
- W3136443090 countsByYear W31364430902021 @default.
- W3136443090 countsByYear W31364430902022 @default.
- W3136443090 countsByYear W31364430902023 @default.
- W3136443090 crossrefType "journal-article" @default.
- W3136443090 hasAuthorship W3136443090A5021096475 @default.
- W3136443090 hasAuthorship W3136443090A5057957652 @default.
- W3136443090 hasAuthorship W3136443090A5067020927 @default.
- W3136443090 hasAuthorship W3136443090A5070542988 @default.
- W3136443090 hasConcept C111603439 @default.
- W3136443090 hasConcept C121332964 @default.
- W3136443090 hasConcept C127413603 @default.
- W3136443090 hasConcept C1633027 @default.
- W3136443090 hasConcept C182748727 @default.
- W3136443090 hasConcept C196558001 @default.
- W3136443090 hasConcept C203311528 @default.
- W3136443090 hasConcept C32526432 @default.
- W3136443090 hasConcept C50517652 @default.
- W3136443090 hasConcept C57879066 @default.
- W3136443090 hasConcept C78519656 @default.
- W3136443090 hasConceptScore W3136443090C111603439 @default.
- W3136443090 hasConceptScore W3136443090C121332964 @default.
- W3136443090 hasConceptScore W3136443090C127413603 @default.
- W3136443090 hasConceptScore W3136443090C1633027 @default.
- W3136443090 hasConceptScore W3136443090C182748727 @default.
- W3136443090 hasConceptScore W3136443090C196558001 @default.