Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136451916> ?p ?o ?g. }
- W3136451916 endingPage "64" @default.
- W3136451916 startingPage "53" @default.
- W3136451916 abstract "Biomarkers are of great importance in many fields, such as cancer research, toxicology, diagnosis and treatment of diseases, and to better understand biological response mechanisms to internal or external intervention. High-throughput gene expression profiling technologies, such as DNA microarrays and RNA sequencing, provide large gene expression data sets which enable data-driven biomarker discovery. Traditional statistical tests have been the mainstream for identifying differentially expressed genes as biomarkers. In recent years, machine learning techniques such as feature selection have gained more popularity. Given many options, picking the most appropriate method for a particular data becomes essential. Different evaluation metrics have therefore been proposed. Being evaluated on different aspects, a method’s varied performance across different datasets leads to the idea of integrating multiple methods. Many integration strategies are proposed and have shown great potential. This chapter gives an overview of the current research advances and existing issues in biomarker discovery using machine learning approaches on gene expression data." @default.
- W3136451916 created "2021-03-29" @default.
- W3136451916 creator A5032199168 @default.
- W3136451916 creator A5047098902 @default.
- W3136451916 creator A5058584634 @default.
- W3136451916 date "2021-03-18" @default.
- W3136451916 modified "2023-10-01" @default.
- W3136451916 title "Machine Learning Approaches for Biomarker Discovery Using Gene Expression Data" @default.
- W3136451916 cites W1534341432 @default.
- W3136451916 cites W1546952499 @default.
- W3136451916 cites W1966703382 @default.
- W3136451916 cites W1976193075 @default.
- W3136451916 cites W1995945562 @default.
- W3136451916 cites W2006300761 @default.
- W3136451916 cites W2038227446 @default.
- W3136451916 cites W2048244792 @default.
- W3136451916 cites W2059005938 @default.
- W3136451916 cites W2062661728 @default.
- W3136451916 cites W2075418882 @default.
- W3136451916 cites W2084440919 @default.
- W3136451916 cites W2094229819 @default.
- W3136451916 cites W2096467860 @default.
- W3136451916 cites W2097255042 @default.
- W3136451916 cites W2110599341 @default.
- W3136451916 cites W2114104545 @default.
- W3136451916 cites W2117004913 @default.
- W3136451916 cites W2121158863 @default.
- W3136451916 cites W2130004766 @default.
- W3136451916 cites W2149775297 @default.
- W3136451916 cites W2152239989 @default.
- W3136451916 cites W2154053567 @default.
- W3136451916 cites W2158698691 @default.
- W3136451916 cites W2162162988 @default.
- W3136451916 cites W2171920878 @default.
- W3136451916 cites W2391718220 @default.
- W3136451916 cites W2503727350 @default.
- W3136451916 cites W2530623388 @default.
- W3136451916 cites W2551651776 @default.
- W3136451916 cites W2556301080 @default.
- W3136451916 cites W2571745526 @default.
- W3136451916 cites W2726539084 @default.
- W3136451916 cites W2793642340 @default.
- W3136451916 cites W2805508285 @default.
- W3136451916 cites W2806313121 @default.
- W3136451916 cites W2809499620 @default.
- W3136451916 cites W2883542968 @default.
- W3136451916 cites W2889190934 @default.
- W3136451916 cites W2911964244 @default.
- W3136451916 cites W2915554894 @default.
- W3136451916 cites W2922853138 @default.
- W3136451916 cites W2924202437 @default.
- W3136451916 cites W2924950986 @default.
- W3136451916 cites W2948009788 @default.
- W3136451916 cites W2950681289 @default.
- W3136451916 cites W2953998300 @default.
- W3136451916 cites W2966266579 @default.
- W3136451916 cites W2973329262 @default.
- W3136451916 cites W2991102299 @default.
- W3136451916 cites W3004974539 @default.
- W3136451916 cites W3005560263 @default.
- W3136451916 cites W3012529551 @default.
- W3136451916 cites W3020427696 @default.
- W3136451916 cites W3041280710 @default.
- W3136451916 cites W3095157351 @default.
- W3136451916 cites W3100360498 @default.
- W3136451916 cites W3105613063 @default.
- W3136451916 cites W3109165972 @default.
- W3136451916 cites W4239510810 @default.
- W3136451916 cites W4294107304 @default.
- W3136451916 cites W4294541781 @default.
- W3136451916 doi "https://doi.org/10.36255/exonpublications.bioinformatics.2021.ch4" @default.
- W3136451916 hasPublicationYear "2021" @default.
- W3136451916 type Work @default.
- W3136451916 sameAs 3136451916 @default.
- W3136451916 citedByCount "6" @default.
- W3136451916 countsByYear W31364519162022 @default.
- W3136451916 countsByYear W31364519162023 @default.
- W3136451916 crossrefType "book-chapter" @default.
- W3136451916 hasAuthorship W3136451916A5032199168 @default.
- W3136451916 hasAuthorship W3136451916A5047098902 @default.
- W3136451916 hasAuthorship W3136451916A5058584634 @default.
- W3136451916 hasBestOaLocation W31364519161 @default.
- W3136451916 hasConcept C104317684 @default.
- W3136451916 hasConcept C111919701 @default.
- W3136451916 hasConcept C119857082 @default.
- W3136451916 hasConcept C124101348 @default.
- W3136451916 hasConcept C124535831 @default.
- W3136451916 hasConcept C148483581 @default.
- W3136451916 hasConcept C150194340 @default.
- W3136451916 hasConcept C154945302 @default.
- W3136451916 hasConcept C187191949 @default.
- W3136451916 hasConcept C2522767166 @default.
- W3136451916 hasConcept C41008148 @default.
- W3136451916 hasConcept C46111723 @default.
- W3136451916 hasConcept C54355233 @default.
- W3136451916 hasConcept C60644358 @default.
- W3136451916 hasConcept C70721500 @default.
- W3136451916 hasConcept C86803240 @default.