Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136469491> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3136469491 endingPage "416" @default.
- W3136469491 startingPage "404" @default.
- W3136469491 abstract "The achromatic number for a graph G = 〈V, E〉 is the largest integer m such that there is a partition of V into disjoint independent sets {V1, …, Vm} such that for each pair of distinct sets Vi, Vj, Vi ∪ Vj is not an independent set in G. Yannakakis and Gavril (1980, SIAM J. Appl. Math.38, 364–372) proved that determining this value for general graphs is NP-complete. For n-vertex graphs we present the first o(n) approximation algorithm for this problem. We also present an O(n5/12) approximation algorithm for graphs with girth at least 5 and a constant approximation algorithm for trees." @default.
- W3136469491 created "2021-03-29" @default.
- W3136469491 creator A5010993811 @default.
- W3136469491 creator A5053966865 @default.
- W3136469491 date "2001-11-01" @default.
- W3136469491 modified "2023-10-17" @default.
- W3136469491 title "Approximation Algorithms for the Achromatic Number" @default.
- W3136469491 cites W1969921821 @default.
- W3136469491 cites W1976422444 @default.
- W3136469491 cites W1988133548 @default.
- W3136469491 cites W2058050269 @default.
- W3136469491 cites W2083271579 @default.
- W3136469491 cites W2160875590 @default.
- W3136469491 doi "https://doi.org/10.1006/jagm.2001.1192" @default.
- W3136469491 hasPublicationYear "2001" @default.
- W3136469491 type Work @default.
- W3136469491 sameAs 3136469491 @default.
- W3136469491 citedByCount "13" @default.
- W3136469491 countsByYear W31364694912012 @default.
- W3136469491 countsByYear W31364694912013 @default.
- W3136469491 countsByYear W31364694912015 @default.
- W3136469491 countsByYear W31364694912020 @default.
- W3136469491 countsByYear W31364694912022 @default.
- W3136469491 crossrefType "journal-article" @default.
- W3136469491 hasAuthorship W3136469491A5010993811 @default.
- W3136469491 hasAuthorship W3136469491A5053966865 @default.
- W3136469491 hasConcept C11413529 @default.
- W3136469491 hasConcept C114614502 @default.
- W3136469491 hasConcept C118615104 @default.
- W3136469491 hasConcept C148764684 @default.
- W3136469491 hasConcept C33923547 @default.
- W3136469491 hasConcept C42812 @default.
- W3136469491 hasConcept C45340560 @default.
- W3136469491 hasConceptScore W3136469491C11413529 @default.
- W3136469491 hasConceptScore W3136469491C114614502 @default.
- W3136469491 hasConceptScore W3136469491C118615104 @default.
- W3136469491 hasConceptScore W3136469491C148764684 @default.
- W3136469491 hasConceptScore W3136469491C33923547 @default.
- W3136469491 hasConceptScore W3136469491C42812 @default.
- W3136469491 hasConceptScore W3136469491C45340560 @default.
- W3136469491 hasIssue "2" @default.
- W3136469491 hasLocation W31364694911 @default.
- W3136469491 hasOpenAccess W3136469491 @default.
- W3136469491 hasPrimaryLocation W31364694911 @default.
- W3136469491 hasRelatedWork W1924677002 @default.
- W3136469491 hasRelatedWork W1985638002 @default.
- W3136469491 hasRelatedWork W1986479634 @default.
- W3136469491 hasRelatedWork W2145358719 @default.
- W3136469491 hasRelatedWork W2613892077 @default.
- W3136469491 hasRelatedWork W2949883286 @default.
- W3136469491 hasRelatedWork W2964064473 @default.
- W3136469491 hasRelatedWork W3025390008 @default.
- W3136469491 hasRelatedWork W4300822877 @default.
- W3136469491 hasRelatedWork W60053231 @default.
- W3136469491 hasVolume "41" @default.
- W3136469491 isParatext "false" @default.
- W3136469491 isRetracted "false" @default.
- W3136469491 magId "3136469491" @default.
- W3136469491 workType "article" @default.