Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136503911> ?p ?o ?g. }
- W3136503911 endingPage "102455" @default.
- W3136503911 startingPage "102455" @default.
- W3136503911 abstract "Here we document the effect of heat transfer fluid (HTF) tube position and shell shape on the melting time and sensible energy requirement for melting a phase change material (PCM) in a multitube latent heat thermal energy storage (LHTES) application. Tube location and shell shape are essential as the shape of the melted region, i.e. similar to the boundary layer, affects convective heat transfer performance. HTF tube total area is fixed in all cases to have the same amount of PCM. In order to eliminate the effect of heat transfer surface area variation, results of two- and four-tube configurations were compared within themselves. Liquid fraction, sensible enthalpy content, and latent/sensible enthalpy ratio relative to time were documented for two and four HTF configurations in various shell shape and tube locations. Results show that eccentric two tubes with rectangular shell decreases melting time and sensible energy requirement from 67 min to 32 min and from 161.8 kJ/kg to 136.3 kJ/kg for 72.3% liquid fraction, respectively, in comparison to the concentric tubes with the circular shell. When the number of HTF tubes increases to four, then the required melting time and sensible energy decrease 80% and 3.8%, respectively, for PCM to melt completely as the concentric tubes and circular shell is replaced with eccentric tubes and rectangular shell. Results of liquid fraction variation relative to time show that S-curve of melting becomes steeper if PCM distribution is such that the intersection of melted regions is delayed. Therefore, melted PCM regions could be packed into a shell that minimizes melting time and required sensible energy. Even rectangular shell shape increases the heat transfer surface (increased heat loss rate) because melting time has decreased greatly, total energy lost to the ambient from the surfaces of shell decreases. Eccentricity slows down the solidification process but due to increased heat loss rate from the surface, rectangular shell enables faster solidification than circular shell shape. There is a trade off in between solidification time and heat loss energy for rectangular channels which can be optimized by selecting proper insulation thickness. Overall, the results show that without any thermal conductivity enhancement (TCE) method, melting performance and latent heat storage capability can be significantly enhanced as decreasing the sensible heat storage by fitting the melted PCM regions into a fixed space for the applications where charging speed is lot faster than discharging." @default.
- W3136503911 created "2021-03-29" @default.
- W3136503911 creator A5056449945 @default.
- W3136503911 creator A5076079177 @default.
- W3136503911 date "2021-05-01" @default.
- W3136503911 modified "2023-10-16" @default.
- W3136503911 title "Emergence of rectangular shell shape in thermal energy storage applications: Fitting melted phase changing material in a fixed space" @default.
- W3136503911 cites W1136054494 @default.
- W3136503911 cites W1627087026 @default.
- W3136503911 cites W1818839059 @default.
- W3136503911 cites W1911686143 @default.
- W3136503911 cites W1969534759 @default.
- W3136503911 cites W1991441089 @default.
- W3136503911 cites W2013341353 @default.
- W3136503911 cites W2016816268 @default.
- W3136503911 cites W2020409595 @default.
- W3136503911 cites W2024505097 @default.
- W3136503911 cites W2028164486 @default.
- W3136503911 cites W2031470336 @default.
- W3136503911 cites W2041279214 @default.
- W3136503911 cites W2060408295 @default.
- W3136503911 cites W2065605464 @default.
- W3136503911 cites W2076224867 @default.
- W3136503911 cites W2078598145 @default.
- W3136503911 cites W2093428530 @default.
- W3136503911 cites W2132164994 @default.
- W3136503911 cites W2185591515 @default.
- W3136503911 cites W2261577209 @default.
- W3136503911 cites W2283266889 @default.
- W3136503911 cites W2343208600 @default.
- W3136503911 cites W239999305 @default.
- W3136503911 cites W2409217476 @default.
- W3136503911 cites W2513138691 @default.
- W3136503911 cites W2517030823 @default.
- W3136503911 cites W2531602568 @default.
- W3136503911 cites W2593033710 @default.
- W3136503911 cites W2618655289 @default.
- W3136503911 cites W2620354728 @default.
- W3136503911 cites W2671463099 @default.
- W3136503911 cites W2734400831 @default.
- W3136503911 cites W2748313130 @default.
- W3136503911 cites W2765291333 @default.
- W3136503911 cites W2775090537 @default.
- W3136503911 cites W2789560202 @default.
- W3136503911 cites W2792335299 @default.
- W3136503911 cites W2794831229 @default.
- W3136503911 cites W2805264571 @default.
- W3136503911 cites W2888052819 @default.
- W3136503911 cites W2892676012 @default.
- W3136503911 cites W2893230369 @default.
- W3136503911 cites W2903168565 @default.
- W3136503911 cites W2913230324 @default.
- W3136503911 cites W2923402240 @default.
- W3136503911 cites W2937168005 @default.
- W3136503911 cites W2940103503 @default.
- W3136503911 cites W2946011532 @default.
- W3136503911 cites W2967293030 @default.
- W3136503911 cites W2982724586 @default.
- W3136503911 cites W3020934812 @default.
- W3136503911 cites W3117788980 @default.
- W3136503911 cites W350665543 @default.
- W3136503911 cites W4252376964 @default.
- W3136503911 doi "https://doi.org/10.1016/j.est.2021.102455" @default.
- W3136503911 hasPublicationYear "2021" @default.
- W3136503911 type Work @default.
- W3136503911 sameAs 3136503911 @default.
- W3136503911 citedByCount "10" @default.
- W3136503911 countsByYear W31365039112021 @default.
- W3136503911 countsByYear W31365039112022 @default.
- W3136503911 countsByYear W31365039112023 @default.
- W3136503911 crossrefType "journal-article" @default.
- W3136503911 hasAuthorship W3136503911A5056449945 @default.
- W3136503911 hasAuthorship W3136503911A5076079177 @default.
- W3136503911 hasConcept C121332964 @default.
- W3136503911 hasConcept C159985019 @default.
- W3136503911 hasConcept C183287310 @default.
- W3136503911 hasConcept C185592680 @default.
- W3136503911 hasConcept C192562407 @default.
- W3136503911 hasConcept C204530211 @default.
- W3136503911 hasConcept C205318045 @default.
- W3136503911 hasConcept C2777551473 @default.
- W3136503911 hasConcept C2778119658 @default.
- W3136503911 hasConcept C2781052500 @default.
- W3136503911 hasConcept C3288061 @default.
- W3136503911 hasConcept C50517652 @default.
- W3136503911 hasConcept C57879066 @default.
- W3136503911 hasConcept C58024561 @default.
- W3136503911 hasConcept C59242433 @default.
- W3136503911 hasConcept C97355855 @default.
- W3136503911 hasConceptScore W3136503911C121332964 @default.
- W3136503911 hasConceptScore W3136503911C159985019 @default.
- W3136503911 hasConceptScore W3136503911C183287310 @default.
- W3136503911 hasConceptScore W3136503911C185592680 @default.
- W3136503911 hasConceptScore W3136503911C192562407 @default.
- W3136503911 hasConceptScore W3136503911C204530211 @default.
- W3136503911 hasConceptScore W3136503911C205318045 @default.
- W3136503911 hasConceptScore W3136503911C2777551473 @default.
- W3136503911 hasConceptScore W3136503911C2778119658 @default.