Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136514097> ?p ?o ?g. }
- W3136514097 endingPage "119" @default.
- W3136514097 startingPage "119" @default.
- W3136514097 abstract "In this paper, we demonstrate how a well-established machine learning-based statistical arbitrage strategy can be successfully transferred from equity to futures markets. First, we preprocess futures time series comprised of front months to render them suitable for our returns-based trading framework and compile a data set comprised of 60 futures covering nearly 10 trading years. Next, we train several machine learning models to predict whether the h-day-ahead return of each future out- or underperforms the corresponding cross-sectional median return. Finally, we enter long/short positions for the top/flop-k futures for a duration of h days and assess the financial performance of the resulting portfolio in an out-of-sample testing period. Thereby, we find the machine learning models to yield statistically significant out-of-sample break-even transaction costs of 6.3 bp—a clear challenge to the semi-strong form of market efficiency. Finally, we discuss sources of profitability and the robustness of our findings." @default.
- W3136514097 created "2021-03-29" @default.
- W3136514097 creator A5021343920 @default.
- W3136514097 creator A5042898653 @default.
- W3136514097 creator A5060699611 @default.
- W3136514097 creator A5079987303 @default.
- W3136514097 date "2021-03-13" @default.
- W3136514097 modified "2023-10-16" @default.
- W3136514097 title "Machine Learning in Futures Markets" @default.
- W3136514097 cites W1930624869 @default.
- W3136514097 cites W2005346797 @default.
- W3136514097 cites W2005551735 @default.
- W3136514097 cites W2010891591 @default.
- W3136514097 cites W2046859882 @default.
- W3136514097 cites W2076610659 @default.
- W3136514097 cites W2082211306 @default.
- W3136514097 cites W2131177033 @default.
- W3136514097 cites W2144011779 @default.
- W3136514097 cites W2276162781 @default.
- W3136514097 cites W2342352817 @default.
- W3136514097 cites W2624385633 @default.
- W3136514097 cites W2910401125 @default.
- W3136514097 cites W2910929700 @default.
- W3136514097 cites W2911964244 @default.
- W3136514097 cites W2914318589 @default.
- W3136514097 cites W2917431595 @default.
- W3136514097 cites W2937013183 @default.
- W3136514097 cites W3007066689 @default.
- W3136514097 cites W3099878876 @default.
- W3136514097 cites W3121465794 @default.
- W3136514097 cites W3122766348 @default.
- W3136514097 cites W3124185353 @default.
- W3136514097 cites W3124849400 @default.
- W3136514097 cites W4231546411 @default.
- W3136514097 doi "https://doi.org/10.3390/jrfm14030119" @default.
- W3136514097 hasPublicationYear "2021" @default.
- W3136514097 type Work @default.
- W3136514097 sameAs 3136514097 @default.
- W3136514097 citedByCount "3" @default.
- W3136514097 countsByYear W31365140972021 @default.
- W3136514097 countsByYear W31365140972022 @default.
- W3136514097 crossrefType "journal-article" @default.
- W3136514097 hasAuthorship W3136514097A5021343920 @default.
- W3136514097 hasAuthorship W3136514097A5042898653 @default.
- W3136514097 hasAuthorship W3136514097A5060699611 @default.
- W3136514097 hasAuthorship W3136514097A5079987303 @default.
- W3136514097 hasBestOaLocation W31365140971 @default.
- W3136514097 hasConcept C10138342 @default.
- W3136514097 hasConcept C104317684 @default.
- W3136514097 hasConcept C106159729 @default.
- W3136514097 hasConcept C106306483 @default.
- W3136514097 hasConcept C119857082 @default.
- W3136514097 hasConcept C129361004 @default.
- W3136514097 hasConcept C131562839 @default.
- W3136514097 hasConcept C142450864 @default.
- W3136514097 hasConcept C149782125 @default.
- W3136514097 hasConcept C154945302 @default.
- W3136514097 hasConcept C162324750 @default.
- W3136514097 hasConcept C167416602 @default.
- W3136514097 hasConcept C17744445 @default.
- W3136514097 hasConcept C181236170 @default.
- W3136514097 hasConcept C185592680 @default.
- W3136514097 hasConcept C198531522 @default.
- W3136514097 hasConcept C199539241 @default.
- W3136514097 hasConcept C199728807 @default.
- W3136514097 hasConcept C2780821815 @default.
- W3136514097 hasConcept C41008148 @default.
- W3136514097 hasConcept C42854785 @default.
- W3136514097 hasConcept C43617362 @default.
- W3136514097 hasConcept C55493867 @default.
- W3136514097 hasConcept C63479239 @default.
- W3136514097 hasConcept C98965940 @default.
- W3136514097 hasConceptScore W3136514097C10138342 @default.
- W3136514097 hasConceptScore W3136514097C104317684 @default.
- W3136514097 hasConceptScore W3136514097C106159729 @default.
- W3136514097 hasConceptScore W3136514097C106306483 @default.
- W3136514097 hasConceptScore W3136514097C119857082 @default.
- W3136514097 hasConceptScore W3136514097C129361004 @default.
- W3136514097 hasConceptScore W3136514097C131562839 @default.
- W3136514097 hasConceptScore W3136514097C142450864 @default.
- W3136514097 hasConceptScore W3136514097C149782125 @default.
- W3136514097 hasConceptScore W3136514097C154945302 @default.
- W3136514097 hasConceptScore W3136514097C162324750 @default.
- W3136514097 hasConceptScore W3136514097C167416602 @default.
- W3136514097 hasConceptScore W3136514097C17744445 @default.
- W3136514097 hasConceptScore W3136514097C181236170 @default.
- W3136514097 hasConceptScore W3136514097C185592680 @default.
- W3136514097 hasConceptScore W3136514097C198531522 @default.
- W3136514097 hasConceptScore W3136514097C199539241 @default.
- W3136514097 hasConceptScore W3136514097C199728807 @default.
- W3136514097 hasConceptScore W3136514097C2780821815 @default.
- W3136514097 hasConceptScore W3136514097C41008148 @default.
- W3136514097 hasConceptScore W3136514097C42854785 @default.
- W3136514097 hasConceptScore W3136514097C43617362 @default.
- W3136514097 hasConceptScore W3136514097C55493867 @default.
- W3136514097 hasConceptScore W3136514097C63479239 @default.
- W3136514097 hasConceptScore W3136514097C98965940 @default.
- W3136514097 hasIssue "3" @default.