Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136530008> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3136530008 abstract "Electrocardiogram(ECG) is a valuable clinical signal, which is widely used to identify the cardiovascular diseases. However, it remains a cumbersome process to manually evaluate the ECG signals because of smaller variations in its physiological features in normal and abnormal cases that too when there are a huge number of cardiac patients to examine. In such a scenario, automatic classification of ECG signals can provide an ease to the doctors to make a correct diagnosis of a particular disease. This work proposes a classification model to classify the ECG in five different classes based on their morphological features. Instead of using manually designed features as most of the existing ECG classification works do, we have extracted data-driven non-linear features using convolutional neural network. The 1D-CNN model architecture is based on three convolutional, max pooling and dense layers which automatically extracts distinguishable nonlinear features from the ECG signals and automatically classify them into five different classes: Non-ectopic beats (Normal Beat), Supraventricular ectopic beats, Ventricular ectopic beats, Fusion Beats and Unknown Beats. The proposed algorithm was assessed using open-source database of MIT-BIH, which is based on 47 subjects. After 5-fold cross-validation, the presented algorithm achieves an accuracy of 97.36% and f1 score of 99.83%. It is a simple yet fast performing model that is implementable on e-healthcare-based devices for remote heart diagnosis of patients." @default.
- W3136530008 created "2021-03-29" @default.
- W3136530008 creator A5004894915 @default.
- W3136530008 creator A5034727400 @default.
- W3136530008 creator A5066122272 @default.
- W3136530008 creator A5080644684 @default.
- W3136530008 date "2020-11-27" @default.
- W3136530008 modified "2023-09-30" @default.
- W3136530008 title "ECG Heartbeat Classification Using CNN" @default.
- W3136530008 cites W2005583196 @default.
- W3136530008 cites W2062014239 @default.
- W3136530008 cites W2064675550 @default.
- W3136530008 cites W2100537461 @default.
- W3136530008 cites W2124785086 @default.
- W3136530008 cites W2168816777 @default.
- W3136530008 cites W2211945929 @default.
- W3136530008 cites W2423609858 @default.
- W3136530008 cites W2482102801 @default.
- W3136530008 cites W2748902594 @default.
- W3136530008 cites W2919115771 @default.
- W3136530008 cites W2964121744 @default.
- W3136530008 cites W779288015 @default.
- W3136530008 doi "https://doi.org/10.1109/upcon50219.2020.9376451" @default.
- W3136530008 hasPublicationYear "2020" @default.
- W3136530008 type Work @default.
- W3136530008 sameAs 3136530008 @default.
- W3136530008 citedByCount "1" @default.
- W3136530008 countsByYear W31365300082023 @default.
- W3136530008 crossrefType "proceedings-article" @default.
- W3136530008 hasAuthorship W3136530008A5004894915 @default.
- W3136530008 hasAuthorship W3136530008A5034727400 @default.
- W3136530008 hasAuthorship W3136530008A5066122272 @default.
- W3136530008 hasAuthorship W3136530008A5080644684 @default.
- W3136530008 hasConcept C13852961 @default.
- W3136530008 hasConcept C153180895 @default.
- W3136530008 hasConcept C154945302 @default.
- W3136530008 hasConcept C164705383 @default.
- W3136530008 hasConcept C2780040984 @default.
- W3136530008 hasConcept C38652104 @default.
- W3136530008 hasConcept C41008148 @default.
- W3136530008 hasConcept C52622490 @default.
- W3136530008 hasConcept C70437156 @default.
- W3136530008 hasConcept C71924100 @default.
- W3136530008 hasConcept C81363708 @default.
- W3136530008 hasConceptScore W3136530008C13852961 @default.
- W3136530008 hasConceptScore W3136530008C153180895 @default.
- W3136530008 hasConceptScore W3136530008C154945302 @default.
- W3136530008 hasConceptScore W3136530008C164705383 @default.
- W3136530008 hasConceptScore W3136530008C2780040984 @default.
- W3136530008 hasConceptScore W3136530008C38652104 @default.
- W3136530008 hasConceptScore W3136530008C41008148 @default.
- W3136530008 hasConceptScore W3136530008C52622490 @default.
- W3136530008 hasConceptScore W3136530008C70437156 @default.
- W3136530008 hasConceptScore W3136530008C71924100 @default.
- W3136530008 hasConceptScore W3136530008C81363708 @default.
- W3136530008 hasLocation W31365300081 @default.
- W3136530008 hasOpenAccess W3136530008 @default.
- W3136530008 hasPrimaryLocation W31365300081 @default.
- W3136530008 hasRelatedWork W12336802 @default.
- W3136530008 hasRelatedWork W12793662 @default.
- W3136530008 hasRelatedWork W13824394 @default.
- W3136530008 hasRelatedWork W2526871 @default.
- W3136530008 hasRelatedWork W2582698 @default.
- W3136530008 hasRelatedWork W2849812 @default.
- W3136530008 hasRelatedWork W4136762 @default.
- W3136530008 hasRelatedWork W7303821 @default.
- W3136530008 hasRelatedWork W9190101 @default.
- W3136530008 hasRelatedWork W9474471 @default.
- W3136530008 isParatext "false" @default.
- W3136530008 isRetracted "false" @default.
- W3136530008 magId "3136530008" @default.
- W3136530008 workType "article" @default.