Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136552708> ?p ?o ?g. }
- W3136552708 endingPage "1133" @default.
- W3136552708 startingPage "1087" @default.
- W3136552708 abstract "Modeling user preferences (long-term history) and user dynamics (short-term history) is of greatest importance to build efficient sequential recommender systems. The challenge lies in the successful combination of the whole user’s history and his recent actions (sequential dynamics) to provide personalized recommendations. Existing methods capture the sequential dynamics of a user using fixed-order Markov chains (usually first order chains) regardless of the user, which limits both the impact of the past of the user on the recommendation and the ability to adapt its length to the user profile. In this article, we propose to use frequent sequences to identify the most relevant part of the user history for the recommendation. The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics. Extensive experiments demonstrate that our method outperforms state-of-the-art, especially on sparse datasets. We show that considering sequences of varying lengths improves the recommendations and we also emphasize that these sequences provide explanations on the recommendation." @default.
- W3136552708 created "2021-03-29" @default.
- W3136552708 creator A5005072988 @default.
- W3136552708 creator A5028434928 @default.
- W3136552708 creator A5048531196 @default.
- W3136552708 creator A5048794271 @default.
- W3136552708 date "2021-03-12" @default.
- W3136552708 modified "2023-10-18" @default.
- W3136552708 title "Sequential recommendation with metric models based on frequent sequences" @default.
- W3136552708 cites W1500188831 @default.
- W3136552708 cites W1720514416 @default.
- W3136552708 cites W1987431925 @default.
- W3136552708 cites W1989318262 @default.
- W3136552708 cites W1991055526 @default.
- W3136552708 cites W2027731328 @default.
- W3136552708 cites W2042281163 @default.
- W3136552708 cites W2057991616 @default.
- W3136552708 cites W2078488685 @default.
- W3136552708 cites W2080320419 @default.
- W3136552708 cites W2108920354 @default.
- W3136552708 cites W2153578526 @default.
- W3136552708 cites W2171279286 @default.
- W3136552708 cites W2210543184 @default.
- W3136552708 cites W2219888463 @default.
- W3136552708 cites W2341865734 @default.
- W3136552708 cites W2509893387 @default.
- W3136552708 cites W2565948352 @default.
- W3136552708 cites W2605350416 @default.
- W3136552708 cites W2626454364 @default.
- W3136552708 cites W2726499916 @default.
- W3136552708 cites W2734755249 @default.
- W3136552708 cites W2743333519 @default.
- W3136552708 cites W2746011824 @default.
- W3136552708 cites W2783272285 @default.
- W3136552708 cites W2783944588 @default.
- W3136552708 cites W2795199972 @default.
- W3136552708 cites W2798385737 @default.
- W3136552708 cites W2886209086 @default.
- W3136552708 cites W2892821876 @default.
- W3136552708 cites W2949398047 @default.
- W3136552708 cites W2963367478 @default.
- W3136552708 cites W2964296635 @default.
- W3136552708 cites W3007295698 @default.
- W3136552708 cites W3092711134 @default.
- W3136552708 cites W4248672808 @default.
- W3136552708 cites W4249267926 @default.
- W3136552708 cites W4288083766 @default.
- W3136552708 cites W938539187 @default.
- W3136552708 doi "https://doi.org/10.1007/s10618-021-00744-w" @default.
- W3136552708 hasPublicationYear "2021" @default.
- W3136552708 type Work @default.
- W3136552708 sameAs 3136552708 @default.
- W3136552708 citedByCount "10" @default.
- W3136552708 countsByYear W31365527082022 @default.
- W3136552708 countsByYear W31365527082023 @default.
- W3136552708 crossrefType "journal-article" @default.
- W3136552708 hasAuthorship W3136552708A5005072988 @default.
- W3136552708 hasAuthorship W3136552708A5028434928 @default.
- W3136552708 hasAuthorship W3136552708A5048531196 @default.
- W3136552708 hasAuthorship W3136552708A5048794271 @default.
- W3136552708 hasBestOaLocation W31365527084 @default.
- W3136552708 hasConcept C105795698 @default.
- W3136552708 hasConcept C107457646 @default.
- W3136552708 hasConcept C111919701 @default.
- W3136552708 hasConcept C119857082 @default.
- W3136552708 hasConcept C121332964 @default.
- W3136552708 hasConcept C124101348 @default.
- W3136552708 hasConcept C127413603 @default.
- W3136552708 hasConcept C145912823 @default.
- W3136552708 hasConcept C154945302 @default.
- W3136552708 hasConcept C159886148 @default.
- W3136552708 hasConcept C176217482 @default.
- W3136552708 hasConcept C21547014 @default.
- W3136552708 hasConcept C23123220 @default.
- W3136552708 hasConcept C24890656 @default.
- W3136552708 hasConcept C2780719617 @default.
- W3136552708 hasConcept C33923547 @default.
- W3136552708 hasConcept C41008148 @default.
- W3136552708 hasConcept C557471498 @default.
- W3136552708 hasConcept C61797465 @default.
- W3136552708 hasConcept C62520636 @default.
- W3136552708 hasConcept C67712803 @default.
- W3136552708 hasConcept C89505385 @default.
- W3136552708 hasConcept C98763669 @default.
- W3136552708 hasConceptScore W3136552708C105795698 @default.
- W3136552708 hasConceptScore W3136552708C107457646 @default.
- W3136552708 hasConceptScore W3136552708C111919701 @default.
- W3136552708 hasConceptScore W3136552708C119857082 @default.
- W3136552708 hasConceptScore W3136552708C121332964 @default.
- W3136552708 hasConceptScore W3136552708C124101348 @default.
- W3136552708 hasConceptScore W3136552708C127413603 @default.
- W3136552708 hasConceptScore W3136552708C145912823 @default.
- W3136552708 hasConceptScore W3136552708C154945302 @default.
- W3136552708 hasConceptScore W3136552708C159886148 @default.
- W3136552708 hasConceptScore W3136552708C176217482 @default.
- W3136552708 hasConceptScore W3136552708C21547014 @default.
- W3136552708 hasConceptScore W3136552708C23123220 @default.
- W3136552708 hasConceptScore W3136552708C24890656 @default.