Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136555658> ?p ?o ?g. }
- W3136555658 endingPage "101272" @default.
- W3136555658 startingPage "101272" @default.
- W3136555658 abstract "Abstract Wetlands are an integral part of the socio-ecological setup of the earth, but their fast transformation beg careful consideration. In this regard, the flood plain wetlands of the Atreyee river basin of India and Bangladesh are not exceptional. The main goal of this study is the mapping of the floodplain wetlands, along with arriving at predictions of their area up to 2039 using the advanced technique of artificial neural network based cellular automata (ANN-CA). Apart from this, prediction of wetland depth using linear regression model is another aim of the present research work. The analysis is executed using 27 Landsat images and Digital Elevation Model (DEM). Results reveal that the present wetland area is 52.92 km2 in pre-monsoon and 518.68 km2 in post-monsoon season, respectively. The composite wetland map from 1987 to 2019 of post-monsoon clearly indicates that 10.48km2 wetlands are identified as hydro-ecologically consistent wetlands. Simulated models reveal that the wetland area from 2009 to 2019 has declined by 66.16km2 and is expected to decrease by 164.62km2 in the next 20 years. Normalized Difference Water Index (NDWI) depth indicates that water availability also may decline significantly in the next 20 years as per regression model-based simulation. All the simulated models were validated with observed wetland area by kappa coefficient, receiver operating curve. The present study will definitely be useful for decision-makers by aiding them in initiatives that take a significant step toward maintaining the wetland landscape, as well as the environment." @default.
- W3136555658 created "2021-03-29" @default.
- W3136555658 creator A5052492661 @default.
- W3136555658 creator A5084378110 @default.
- W3136555658 creator A5090825061 @default.
- W3136555658 date "2021-05-01" @default.
- W3136555658 modified "2023-10-18" @default.
- W3136555658 title "Prediction of wetland area and depth using linear regression model and artificial neural network based cellular automata" @default.
- W3136555658 cites W1970036587 @default.
- W3136555658 cites W2035699211 @default.
- W3136555658 cites W2052607820 @default.
- W3136555658 cites W2061718511 @default.
- W3136555658 cites W2067086056 @default.
- W3136555658 cites W2077509829 @default.
- W3136555658 cites W2095491927 @default.
- W3136555658 cites W2101602102 @default.
- W3136555658 cites W2101678239 @default.
- W3136555658 cites W2158698691 @default.
- W3136555658 cites W2175360842 @default.
- W3136555658 cites W2181297906 @default.
- W3136555658 cites W2410559685 @default.
- W3136555658 cites W2471095732 @default.
- W3136555658 cites W2505174716 @default.
- W3136555658 cites W2556663267 @default.
- W3136555658 cites W2560982496 @default.
- W3136555658 cites W2740674567 @default.
- W3136555658 cites W2768048451 @default.
- W3136555658 cites W2785454671 @default.
- W3136555658 cites W2786946506 @default.
- W3136555658 cites W2792619108 @default.
- W3136555658 cites W2792802470 @default.
- W3136555658 cites W2802056020 @default.
- W3136555658 cites W2900031493 @default.
- W3136555658 cites W2900373877 @default.
- W3136555658 cites W2909452579 @default.
- W3136555658 cites W2914708459 @default.
- W3136555658 cites W2915483120 @default.
- W3136555658 cites W2917749783 @default.
- W3136555658 cites W2918049083 @default.
- W3136555658 cites W2920138370 @default.
- W3136555658 cites W2924934668 @default.
- W3136555658 cites W2936760839 @default.
- W3136555658 cites W2945965465 @default.
- W3136555658 cites W2947066650 @default.
- W3136555658 cites W2947614696 @default.
- W3136555658 cites W2951247612 @default.
- W3136555658 cites W2955716942 @default.
- W3136555658 cites W2965118545 @default.
- W3136555658 cites W2970824115 @default.
- W3136555658 cites W2971249304 @default.
- W3136555658 cites W2974206351 @default.
- W3136555658 cites W2975064574 @default.
- W3136555658 cites W2976174541 @default.
- W3136555658 cites W2984174306 @default.
- W3136555658 cites W2988683233 @default.
- W3136555658 cites W2994386668 @default.
- W3136555658 cites W2996139122 @default.
- W3136555658 cites W2997968425 @default.
- W3136555658 cites W3001104709 @default.
- W3136555658 cites W3003630756 @default.
- W3136555658 cites W3003992331 @default.
- W3136555658 cites W3006338467 @default.
- W3136555658 cites W3009111693 @default.
- W3136555658 cites W3011334007 @default.
- W3136555658 cites W3013016869 @default.
- W3136555658 cites W3014154233 @default.
- W3136555658 cites W3015950295 @default.
- W3136555658 cites W3017247426 @default.
- W3136555658 cites W3018770027 @default.
- W3136555658 cites W3019251610 @default.
- W3136555658 cites W3020844986 @default.
- W3136555658 cites W3022146962 @default.
- W3136555658 cites W3024536415 @default.
- W3136555658 cites W3028081629 @default.
- W3136555658 cites W3032076617 @default.
- W3136555658 cites W3036548982 @default.
- W3136555658 cites W3041058661 @default.
- W3136555658 cites W3041253365 @default.
- W3136555658 cites W3066156578 @default.
- W3136555658 cites W3082490771 @default.
- W3136555658 doi "https://doi.org/10.1016/j.ecoinf.2021.101272" @default.
- W3136555658 hasPublicationYear "2021" @default.
- W3136555658 type Work @default.
- W3136555658 sameAs 3136555658 @default.
- W3136555658 citedByCount "30" @default.
- W3136555658 countsByYear W31365556582021 @default.
- W3136555658 countsByYear W31365556582022 @default.
- W3136555658 countsByYear W31365556582023 @default.
- W3136555658 crossrefType "journal-article" @default.
- W3136555658 hasAuthorship W3136555658A5052492661 @default.
- W3136555658 hasAuthorship W3136555658A5084378110 @default.
- W3136555658 hasAuthorship W3136555658A5090825061 @default.
- W3136555658 hasConcept C105795698 @default.
- W3136555658 hasConcept C119857082 @default.
- W3136555658 hasConcept C152877465 @default.
- W3136555658 hasConcept C154945302 @default.
- W3136555658 hasConcept C18903297 @default.
- W3136555658 hasConcept C33923547 @default.