Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136562955> ?p ?o ?g. }
- W3136562955 endingPage "2888" @default.
- W3136562955 startingPage "2888" @default.
- W3136562955 abstract "Laser shock peening (LSP) as a surface treatment technique can improve the fatigue life and corrosion resistance of metallic materials by introducing significant compressive residual stresses near the surface. However, LSP-induced residual stresses are known to be dependent on a multitude of factors, such as laser process variables (spot size, pulse width and energy), component geometry, material properties and the peening sequence. In this study, an intelligent system based on machine learning was developed that can predict the residual stress distribution induced by LSP. The system can also be applied to “reverse-optimise” the process parameters. The prediction system was developed using residual stress data derived from incremental hole drilling. We used artificial neural networks (ANNs) within a Bayesian framework to develop a robust prediction model validated using a comprehensive set of case studies. We also studied the relative importance of the LSP process parameters using Garson’s algorithm and parametric studies to understand the response of the residual stresses in laser peening systems as a function of different process variables. Furthermore, this study critically evaluates the developed machine learning models while demonstrating the potential benefits of implementing an intelligent system in prediction and optimisation strategies of the laser shock peening process." @default.
- W3136562955 created "2021-03-29" @default.
- W3136562955 creator A5015591172 @default.
- W3136562955 creator A5046262492 @default.
- W3136562955 creator A5046264677 @default.
- W3136562955 creator A5059759403 @default.
- W3136562955 creator A5063066045 @default.
- W3136562955 creator A5067103524 @default.
- W3136562955 creator A5076893324 @default.
- W3136562955 date "2021-03-24" @default.
- W3136562955 modified "2023-09-27" @default.
- W3136562955 title "Machine Learning-Based Prediction and Optimisation System for Laser Shock Peening" @default.
- W3136562955 cites W1498436455 @default.
- W3136562955 cites W1650561570 @default.
- W3136562955 cites W1810830047 @default.
- W3136562955 cites W1964144501 @default.
- W3136562955 cites W1971598547 @default.
- W3136562955 cites W1979692075 @default.
- W3136562955 cites W1983617623 @default.
- W3136562955 cites W1988219176 @default.
- W3136562955 cites W1993369782 @default.
- W3136562955 cites W2001161958 @default.
- W3136562955 cites W2031717845 @default.
- W3136562955 cites W2037077945 @default.
- W3136562955 cites W2054818965 @default.
- W3136562955 cites W2059204509 @default.
- W3136562955 cites W2064850813 @default.
- W3136562955 cites W2072140267 @default.
- W3136562955 cites W2074791360 @default.
- W3136562955 cites W2084959187 @default.
- W3136562955 cites W2106100979 @default.
- W3136562955 cites W2111051539 @default.
- W3136562955 cites W2137983211 @default.
- W3136562955 cites W2169053895 @default.
- W3136562955 cites W2243010996 @default.
- W3136562955 cites W2564784470 @default.
- W3136562955 cites W2762107548 @default.
- W3136562955 cites W2769062173 @default.
- W3136562955 cites W2803811457 @default.
- W3136562955 cites W2897328287 @default.
- W3136562955 cites W2909315863 @default.
- W3136562955 cites W2948540284 @default.
- W3136562955 cites W3005409963 @default.
- W3136562955 cites W93260535 @default.
- W3136562955 doi "https://doi.org/10.3390/app11072888" @default.
- W3136562955 hasPublicationYear "2021" @default.
- W3136562955 type Work @default.
- W3136562955 sameAs 3136562955 @default.
- W3136562955 citedByCount "7" @default.
- W3136562955 countsByYear W31365629552021 @default.
- W3136562955 countsByYear W31365629552022 @default.
- W3136562955 countsByYear W31365629552023 @default.
- W3136562955 crossrefType "journal-article" @default.
- W3136562955 hasAuthorship W3136562955A5015591172 @default.
- W3136562955 hasAuthorship W3136562955A5046262492 @default.
- W3136562955 hasAuthorship W3136562955A5046264677 @default.
- W3136562955 hasAuthorship W3136562955A5059759403 @default.
- W3136562955 hasAuthorship W3136562955A5063066045 @default.
- W3136562955 hasAuthorship W3136562955A5067103524 @default.
- W3136562955 hasAuthorship W3136562955A5076893324 @default.
- W3136562955 hasBestOaLocation W31365629551 @default.
- W3136562955 hasConcept C105795698 @default.
- W3136562955 hasConcept C117251300 @default.
- W3136562955 hasConcept C120665830 @default.
- W3136562955 hasConcept C121332964 @default.
- W3136562955 hasConcept C126322002 @default.
- W3136562955 hasConcept C127413603 @default.
- W3136562955 hasConcept C154945302 @default.
- W3136562955 hasConcept C159985019 @default.
- W3136562955 hasConcept C192562407 @default.
- W3136562955 hasConcept C2781300812 @default.
- W3136562955 hasConcept C33923547 @default.
- W3136562955 hasConcept C37292000 @default.
- W3136562955 hasConcept C41008148 @default.
- W3136562955 hasConcept C50644808 @default.
- W3136562955 hasConcept C520434653 @default.
- W3136562955 hasConcept C541310201 @default.
- W3136562955 hasConcept C66938386 @default.
- W3136562955 hasConcept C71924100 @default.
- W3136562955 hasConcept C7836503 @default.
- W3136562955 hasConcept C84566556 @default.
- W3136562955 hasConceptScore W3136562955C105795698 @default.
- W3136562955 hasConceptScore W3136562955C117251300 @default.
- W3136562955 hasConceptScore W3136562955C120665830 @default.
- W3136562955 hasConceptScore W3136562955C121332964 @default.
- W3136562955 hasConceptScore W3136562955C126322002 @default.
- W3136562955 hasConceptScore W3136562955C127413603 @default.
- W3136562955 hasConceptScore W3136562955C154945302 @default.
- W3136562955 hasConceptScore W3136562955C159985019 @default.
- W3136562955 hasConceptScore W3136562955C192562407 @default.
- W3136562955 hasConceptScore W3136562955C2781300812 @default.
- W3136562955 hasConceptScore W3136562955C33923547 @default.
- W3136562955 hasConceptScore W3136562955C37292000 @default.
- W3136562955 hasConceptScore W3136562955C41008148 @default.
- W3136562955 hasConceptScore W3136562955C50644808 @default.
- W3136562955 hasConceptScore W3136562955C520434653 @default.
- W3136562955 hasConceptScore W3136562955C541310201 @default.
- W3136562955 hasConceptScore W3136562955C66938386 @default.