Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136572868> ?p ?o ?g. }
- W3136572868 abstract "Near infrared (NIR) sensing technology has been widely implemented in various areas due to its noninvasive, green, and rapid measurement features. Artificial Neural Network (ANN) was used for the NIR calibration model. ANN can provide a reliable local calibration model using local data. However, a reliable local calibration model could be invalid or degraded when it is directly used for other instruments. This is because the instrumental variation causes the Local model's performance invalid. The instrumental variation is the difference among the spectra acquired by different instruments. The Global model identified the instrumental variation due to the Global model was developed with the calibration dataset acquired from two or more instruments. Thus, this study aims to compare the Local and Global models' performance among different NIR spectroscopy instruments in corn oil prediction. First, principle component analysis (PCA) was used to compress the NIR spectra. After that, Bayesian (BR) learning algorithm was applied to train an ANN with different initial conditions and hidden neurons to identify an optimal ANN for the primary instrument. The procedure of Global model development was similar to the Local model. The difference between Local and Global models is the global model used two or more calibration datasets to develop the model. Findings show that Global model was the best with the lowest root mean square error of prediction (RMSEP) of 0.1630%, followed by Local model of 0.4074% and 0.4330% for mp5 and mp6 as calibration datasets, respectively and the best correlation coefficient of 0.7514, 0.6532, and 0.7297, respectively, tested with m5 testing dataset in corn oils prediction applications. The same performance was found when the testing dataset were mp5 and mp6." @default.
- W3136572868 created "2021-03-29" @default.
- W3136572868 creator A5022398654 @default.
- W3136572868 creator A5044802226 @default.
- W3136572868 date "2021-03-05" @default.
- W3136572868 modified "2023-09-24" @default.
- W3136572868 title "A Comparison Between Local and Global Models Among Different Near Infrared Spectroscopy Instruments for Corn Oils Prediction" @default.
- W3136572868 cites W1996464241 @default.
- W3136572868 cites W2066536516 @default.
- W3136572868 cites W2083437799 @default.
- W3136572868 cites W2115842892 @default.
- W3136572868 cites W2128876434 @default.
- W3136572868 cites W2158827818 @default.
- W3136572868 cites W2304977721 @default.
- W3136572868 cites W2397349486 @default.
- W3136572868 cites W2607238074 @default.
- W3136572868 cites W2608932243 @default.
- W3136572868 cites W2754254239 @default.
- W3136572868 cites W2762884884 @default.
- W3136572868 cites W2767894389 @default.
- W3136572868 cites W2774142005 @default.
- W3136572868 cites W2786192993 @default.
- W3136572868 cites W2796123342 @default.
- W3136572868 cites W2885456847 @default.
- W3136572868 cites W2887896649 @default.
- W3136572868 cites W2906779339 @default.
- W3136572868 cites W2930716150 @default.
- W3136572868 cites W2974601526 @default.
- W3136572868 cites W2996399223 @default.
- W3136572868 cites W3005709179 @default.
- W3136572868 cites W3011170335 @default.
- W3136572868 cites W3017389978 @default.
- W3136572868 cites W3090652229 @default.
- W3136572868 cites W3097576334 @default.
- W3136572868 cites W3102147081 @default.
- W3136572868 cites W3113281127 @default.
- W3136572868 cites W3113349816 @default.
- W3136572868 doi "https://doi.org/10.1109/cspa52141.2021.9377295" @default.
- W3136572868 hasPublicationYear "2021" @default.
- W3136572868 type Work @default.
- W3136572868 sameAs 3136572868 @default.
- W3136572868 citedByCount "1" @default.
- W3136572868 countsByYear W31365728682022 @default.
- W3136572868 crossrefType "proceedings-article" @default.
- W3136572868 hasAuthorship W3136572868A5022398654 @default.
- W3136572868 hasAuthorship W3136572868A5044802226 @default.
- W3136572868 hasConcept C105795698 @default.
- W3136572868 hasConcept C107673813 @default.
- W3136572868 hasConcept C119857082 @default.
- W3136572868 hasConcept C120665830 @default.
- W3136572868 hasConcept C121332964 @default.
- W3136572868 hasConcept C124101348 @default.
- W3136572868 hasConcept C128990827 @default.
- W3136572868 hasConcept C139945424 @default.
- W3136572868 hasConcept C153180895 @default.
- W3136572868 hasConcept C154945302 @default.
- W3136572868 hasConcept C165838908 @default.
- W3136572868 hasConcept C186060115 @default.
- W3136572868 hasConcept C205649164 @default.
- W3136572868 hasConcept C2780092901 @default.
- W3136572868 hasConcept C33923547 @default.
- W3136572868 hasConcept C41008148 @default.
- W3136572868 hasConcept C43571822 @default.
- W3136572868 hasConcept C50644808 @default.
- W3136572868 hasConcept C62649853 @default.
- W3136572868 hasConcept C86803240 @default.
- W3136572868 hasConceptScore W3136572868C105795698 @default.
- W3136572868 hasConceptScore W3136572868C107673813 @default.
- W3136572868 hasConceptScore W3136572868C119857082 @default.
- W3136572868 hasConceptScore W3136572868C120665830 @default.
- W3136572868 hasConceptScore W3136572868C121332964 @default.
- W3136572868 hasConceptScore W3136572868C124101348 @default.
- W3136572868 hasConceptScore W3136572868C128990827 @default.
- W3136572868 hasConceptScore W3136572868C139945424 @default.
- W3136572868 hasConceptScore W3136572868C153180895 @default.
- W3136572868 hasConceptScore W3136572868C154945302 @default.
- W3136572868 hasConceptScore W3136572868C165838908 @default.
- W3136572868 hasConceptScore W3136572868C186060115 @default.
- W3136572868 hasConceptScore W3136572868C205649164 @default.
- W3136572868 hasConceptScore W3136572868C2780092901 @default.
- W3136572868 hasConceptScore W3136572868C33923547 @default.
- W3136572868 hasConceptScore W3136572868C41008148 @default.
- W3136572868 hasConceptScore W3136572868C43571822 @default.
- W3136572868 hasConceptScore W3136572868C50644808 @default.
- W3136572868 hasConceptScore W3136572868C62649853 @default.
- W3136572868 hasConceptScore W3136572868C86803240 @default.
- W3136572868 hasFunder F4320310112 @default.
- W3136572868 hasLocation W31365728681 @default.
- W3136572868 hasOpenAccess W3136572868 @default.
- W3136572868 hasPrimaryLocation W31365728681 @default.
- W3136572868 hasRelatedWork W1010600 @default.
- W3136572868 hasRelatedWork W12125165 @default.
- W3136572868 hasRelatedWork W13391592 @default.
- W3136572868 hasRelatedWork W3027096 @default.
- W3136572868 hasRelatedWork W3269203 @default.
- W3136572868 hasRelatedWork W8313998 @default.
- W3136572868 hasRelatedWork W8844810 @default.
- W3136572868 hasRelatedWork W8978006 @default.
- W3136572868 hasRelatedWork W946913 @default.
- W3136572868 hasRelatedWork W2123434 @default.