Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136603067> ?p ?o ?g. }
- W3136603067 abstract "The Dendrocephalus brasiliensis , a native species from South America, is a freshwater crustacean well explored in conservational and productive activities. Its main characteristics are its rusticity and resistance cysts production, in which the hatching requires a period of dehydration. Independent of the species utilization nature, it is essential to manipulate its cysts, such as the counting using microscopes. Manually counting is a difficult task, prone to errors, and that also very time-consuming. In this paper, we propose an automatized approach for the detection and counting of Dendrocephalus brasiliensis cysts from images captured by a digital microscope. For this purpose, we built the DBrasiliensis dataset, a repository with 246 images containing 5141 cysts of Dendrocephalus brasiliensis . Then, we trained two state-of-the-art object detection methods, YOLOv3 (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural Networks), on DBrasiliensis dataset in order to compare them under both cyst detection and counting tasks. Experiments showed evidence that YOLOv3 is superior to Faster R-CNN, achieving an accuracy rate of 83,74%, R 2 of 0.88, RMSE (Root Mean Square Error) of 3.49, and MAE (Mean Absolute Error) of 2.24 on cyst detection and counting. Moreover, we showed that is possible to infer the number of cysts of a substrate, with known weight, by performing the automated counting of some of its samples. In conclusion, the proposed approach using YOLOv3 is adequate to detect and count Dendrocephalus brasiliensis cysts. The DBrasiliensis dataset can be accessed at: https://doi.org/10.6084/m9.figshare.13073240 ." @default.
- W3136603067 created "2021-03-29" @default.
- W3136603067 creator A5001985945 @default.
- W3136603067 creator A5025100592 @default.
- W3136603067 creator A5027235988 @default.
- W3136603067 creator A5029349667 @default.
- W3136603067 creator A5034745689 @default.
- W3136603067 creator A5036384651 @default.
- W3136603067 creator A5040514326 @default.
- W3136603067 creator A5073608520 @default.
- W3136603067 creator A5079016457 @default.
- W3136603067 creator A5081671601 @default.
- W3136603067 creator A5086301135 @default.
- W3136603067 creator A5091126039 @default.
- W3136603067 date "2021-03-18" @default.
- W3136603067 modified "2023-10-15" @default.
- W3136603067 title "Recognizing and counting Dendrocephalus brasiliensis (Crustacea: Anostraca) cysts using deep learning" @default.
- W3136603067 cites W1499949510 @default.
- W3136603067 cites W1861492603 @default.
- W3136603067 cites W2031489346 @default.
- W3136603067 cites W2044744655 @default.
- W3136603067 cites W2168745915 @default.
- W3136603067 cites W2183341477 @default.
- W3136603067 cites W2194775991 @default.
- W3136603067 cites W2318802957 @default.
- W3136603067 cites W2804664978 @default.
- W3136603067 cites W2953476424 @default.
- W3136603067 cites W2963037989 @default.
- W3136603067 cites W2964081807 @default.
- W3136603067 cites W2966501554 @default.
- W3136603067 cites W2972006294 @default.
- W3136603067 cites W2972950104 @default.
- W3136603067 cites W2980522727 @default.
- W3136603067 cites W2989998356 @default.
- W3136603067 cites W3014286955 @default.
- W3136603067 cites W3017145925 @default.
- W3136603067 cites W3020187385 @default.
- W3136603067 cites W3042482584 @default.
- W3136603067 cites W639708223 @default.
- W3136603067 doi "https://doi.org/10.1371/journal.pone.0248574" @default.
- W3136603067 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7971481" @default.
- W3136603067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33735277" @default.
- W3136603067 hasPublicationYear "2021" @default.
- W3136603067 type Work @default.
- W3136603067 sameAs 3136603067 @default.
- W3136603067 citedByCount "0" @default.
- W3136603067 crossrefType "journal-article" @default.
- W3136603067 hasAuthorship W3136603067A5001985945 @default.
- W3136603067 hasAuthorship W3136603067A5025100592 @default.
- W3136603067 hasAuthorship W3136603067A5027235988 @default.
- W3136603067 hasAuthorship W3136603067A5029349667 @default.
- W3136603067 hasAuthorship W3136603067A5034745689 @default.
- W3136603067 hasAuthorship W3136603067A5036384651 @default.
- W3136603067 hasAuthorship W3136603067A5040514326 @default.
- W3136603067 hasAuthorship W3136603067A5073608520 @default.
- W3136603067 hasAuthorship W3136603067A5079016457 @default.
- W3136603067 hasAuthorship W3136603067A5081671601 @default.
- W3136603067 hasAuthorship W3136603067A5086301135 @default.
- W3136603067 hasAuthorship W3136603067A5091126039 @default.
- W3136603067 hasBestOaLocation W31366030671 @default.
- W3136603067 hasConcept C108583219 @default.
- W3136603067 hasConcept C153180895 @default.
- W3136603067 hasConcept C154945302 @default.
- W3136603067 hasConcept C18903297 @default.
- W3136603067 hasConcept C2776960985 @default.
- W3136603067 hasConcept C2776987104 @default.
- W3136603067 hasConcept C2778208666 @default.
- W3136603067 hasConcept C31972630 @default.
- W3136603067 hasConcept C41008148 @default.
- W3136603067 hasConcept C81363708 @default.
- W3136603067 hasConcept C84766238 @default.
- W3136603067 hasConcept C86803240 @default.
- W3136603067 hasConceptScore W3136603067C108583219 @default.
- W3136603067 hasConceptScore W3136603067C153180895 @default.
- W3136603067 hasConceptScore W3136603067C154945302 @default.
- W3136603067 hasConceptScore W3136603067C18903297 @default.
- W3136603067 hasConceptScore W3136603067C2776960985 @default.
- W3136603067 hasConceptScore W3136603067C2776987104 @default.
- W3136603067 hasConceptScore W3136603067C2778208666 @default.
- W3136603067 hasConceptScore W3136603067C31972630 @default.
- W3136603067 hasConceptScore W3136603067C41008148 @default.
- W3136603067 hasConceptScore W3136603067C81363708 @default.
- W3136603067 hasConceptScore W3136603067C84766238 @default.
- W3136603067 hasConceptScore W3136603067C86803240 @default.
- W3136603067 hasFunder F4320321091 @default.
- W3136603067 hasLocation W31366030671 @default.
- W3136603067 hasLocation W31366030672 @default.
- W3136603067 hasLocation W31366030673 @default.
- W3136603067 hasOpenAccess W3136603067 @default.
- W3136603067 hasPrimaryLocation W31366030671 @default.
- W3136603067 hasRelatedWork W2731899572 @default.
- W3136603067 hasRelatedWork W2732542196 @default.
- W3136603067 hasRelatedWork W2738221750 @default.
- W3136603067 hasRelatedWork W2999805992 @default.
- W3136603067 hasRelatedWork W3116150086 @default.
- W3136603067 hasRelatedWork W3133861977 @default.
- W3136603067 hasRelatedWork W3156786002 @default.
- W3136603067 hasRelatedWork W3184130799 @default.
- W3136603067 hasRelatedWork W3186111093 @default.
- W3136603067 hasRelatedWork W4200173597 @default.