Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136603779> ?p ?o ?g. }
- W3136603779 endingPage "1851" @default.
- W3136603779 startingPage "1838" @default.
- W3136603779 abstract "Deep learning models are sensitive to domain shift phenomena. A model trained on images from one domain cannot generalise well when tested on images from a different domain, despite capturing similar anatomical structures. It is mainly because the data distribution between the two domains is different. Moreover, creating annotation for every new modality is a tedious and time-consuming task, which also suffers from high inter- and intra- observer variability. Unsupervised domain adaptation (UDA) methods intend to reduce the gap between source and target domains by leveraging source domain labelled data to generate labels for the target domain. However, current state-of-the-art (SOTA) UDA methods demonstrate degraded performance when there is insufficient data in source and target domains. In this paper, we present a novel UDA method for multi-modal cardiac image segmentation. The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces. The paper introduces an end-to-end framework that integrates: a) entropy minimization, b) output feature space alignment and c) a novel point-cloud shape adaptation based on the latent features learned by the segmentation model. We validated our method on two cardiac datasets by adapting from the annotated source domain, bSSFP-MRI (balanced Steady-State Free Procession-MRI), to the unannotated target domain, LGE-MRI (Late-gadolinium enhance-MRI), for the multi-sequence dataset; and from MRI (source) to CT (target) for the cross-modality dataset. The results highlighted that by enforcing adversarial learning in different parts of the network, the proposed method delivered promising performance, compared to other SOTA methods." @default.
- W3136603779 created "2021-03-29" @default.
- W3136603779 creator A5001765180 @default.
- W3136603779 creator A5010990212 @default.
- W3136603779 creator A5020211325 @default.
- W3136603779 creator A5028924625 @default.
- W3136603779 creator A5073918042 @default.
- W3136603779 date "2021-07-01" @default.
- W3136603779 modified "2023-10-11" @default.
- W3136603779 title "Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy Minimization for Multi-Modal Cardiac Image Segmentation" @default.
- W3136603779 cites W1534026557 @default.
- W3136603779 cites W2175803595 @default.
- W3136603779 cites W2525945566 @default.
- W3136603779 cites W2560609797 @default.
- W3136603779 cites W2560722161 @default.
- W3136603779 cites W2562469482 @default.
- W3136603779 cites W2617027347 @default.
- W3136603779 cites W2803684675 @default.
- W3136603779 cites W2804047627 @default.
- W3136603779 cites W2884292375 @default.
- W3136603779 cites W2915496375 @default.
- W3136603779 cites W2949477454 @default.
- W3136603779 cites W2959183777 @default.
- W3136603779 cites W2962677184 @default.
- W3136603779 cites W2962793481 @default.
- W3136603779 cites W2962825119 @default.
- W3136603779 cites W2963073217 @default.
- W3136603779 cites W2963073614 @default.
- W3136603779 cites W2963107255 @default.
- W3136603779 cites W2963797156 @default.
- W3136603779 cites W2963890275 @default.
- W3136603779 cites W2966333895 @default.
- W3136603779 cites W2979610451 @default.
- W3136603779 cites W2979647636 @default.
- W3136603779 cites W2979801810 @default.
- W3136603779 cites W2980302804 @default.
- W3136603779 cites W2985409929 @default.
- W3136603779 cites W2995848654 @default.
- W3136603779 cites W2995891971 @default.
- W3136603779 cites W3001060582 @default.
- W3136603779 cites W3001192030 @default.
- W3136603779 cites W3001543328 @default.
- W3136603779 cites W3001791145 @default.
- W3136603779 cites W3002938804 @default.
- W3136603779 cites W3004256419 @default.
- W3136603779 cites W3004327470 @default.
- W3136603779 cites W3004346631 @default.
- W3136603779 cites W3006040295 @default.
- W3136603779 cites W3007227736 @default.
- W3136603779 cites W3028161711 @default.
- W3136603779 cites W3100349398 @default.
- W3136603779 doi "https://doi.org/10.1109/tmi.2021.3066683" @default.
- W3136603779 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33729930" @default.
- W3136603779 hasPublicationYear "2021" @default.
- W3136603779 type Work @default.
- W3136603779 sameAs 3136603779 @default.
- W3136603779 citedByCount "19" @default.
- W3136603779 countsByYear W31366037792021 @default.
- W3136603779 countsByYear W31366037792022 @default.
- W3136603779 countsByYear W31366037792023 @default.
- W3136603779 crossrefType "journal-article" @default.
- W3136603779 hasAuthorship W3136603779A5001765180 @default.
- W3136603779 hasAuthorship W3136603779A5010990212 @default.
- W3136603779 hasAuthorship W3136603779A5020211325 @default.
- W3136603779 hasAuthorship W3136603779A5028924625 @default.
- W3136603779 hasAuthorship W3136603779A5073918042 @default.
- W3136603779 hasBestOaLocation W31366037792 @default.
- W3136603779 hasConcept C106301342 @default.
- W3136603779 hasConcept C108583219 @default.
- W3136603779 hasConcept C121332964 @default.
- W3136603779 hasConcept C124504099 @default.
- W3136603779 hasConcept C131979681 @default.
- W3136603779 hasConcept C153180895 @default.
- W3136603779 hasConcept C154945302 @default.
- W3136603779 hasConcept C31972630 @default.
- W3136603779 hasConcept C41008148 @default.
- W3136603779 hasConcept C62520636 @default.
- W3136603779 hasConcept C89600930 @default.
- W3136603779 hasConceptScore W3136603779C106301342 @default.
- W3136603779 hasConceptScore W3136603779C108583219 @default.
- W3136603779 hasConceptScore W3136603779C121332964 @default.
- W3136603779 hasConceptScore W3136603779C124504099 @default.
- W3136603779 hasConceptScore W3136603779C131979681 @default.
- W3136603779 hasConceptScore W3136603779C153180895 @default.
- W3136603779 hasConceptScore W3136603779C154945302 @default.
- W3136603779 hasConceptScore W3136603779C31972630 @default.
- W3136603779 hasConceptScore W3136603779C41008148 @default.
- W3136603779 hasConceptScore W3136603779C62520636 @default.
- W3136603779 hasConceptScore W3136603779C89600930 @default.
- W3136603779 hasIssue "7" @default.
- W3136603779 hasLocation W31366037791 @default.
- W3136603779 hasLocation W31366037792 @default.
- W3136603779 hasOpenAccess W3136603779 @default.
- W3136603779 hasPrimaryLocation W31366037791 @default.
- W3136603779 hasRelatedWork W1522196789 @default.
- W3136603779 hasRelatedWork W2005998065 @default.
- W3136603779 hasRelatedWork W2562256921 @default.
- W3136603779 hasRelatedWork W2626737336 @default.