Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136607475> ?p ?o ?g. }
- W3136607475 endingPage "44338" @default.
- W3136607475 startingPage "44322" @default.
- W3136607475 abstract "Economic load dispatch (ELD) in power system problems involves scheduling the power generating units to minimize cost and satisfy system constraints. Although previous works propose solutions to reduce CO2 emission and production cost, an optimal allocation needs to be considered on both cost and emission-leading to combined economic and emission dispatch (CEED). Metaheuristic optimization algorithms perform relatively well on ELD problems. The gradient-based optimizer (GBO) is a new metaheuristic algorithm inspired by Newton's method that integrates both the gradient search rule and local escaping operator. The GBO maintains a good balance between exploration and exploitation. Also, the possibility of the GBO getting stuck in local optima and premature convergence is rare. This paper tests the performance of GBO in solving ELD and CEED problems. We test the performance of GBO on ELD for various scenarios such as ELD with transmission losses, CEED and CEED with valve point effect. The experimental results revealed that GBO has been obtained better results compared to eight other metaheuristic algorithms such as Slime mould algorithm (SMA), Elephant herding optimization (EHO), Monarch butterfly optimization (MBO), Moth search algorithm (MSA), Earthworm optimization algorithm (EWA), Artificial Bee Colony (ABC) Algorithm, Tunicate Swarm Algorithm (TSA) and Chimp Optimization Algorithm (ChOA). Therefore, the simulation results showed the competitive performance of GBO as compared to other benchmark algorithms." @default.
- W3136607475 created "2021-03-29" @default.
- W3136607475 creator A5001630272 @default.
- W3136607475 creator A5048636901 @default.
- W3136607475 creator A5056436780 @default.
- W3136607475 creator A5067850800 @default.
- W3136607475 date "2021-01-01" @default.
- W3136607475 modified "2023-10-17" @default.
- W3136607475 title "Recent Methodology-Based Gradient-Based Optimizer for Economic Load Dispatch Problem" @default.
- W3136607475 cites W1826421496 @default.
- W3136607475 cites W1983947028 @default.
- W3136607475 cites W2064777536 @default.
- W3136607475 cites W2151554678 @default.
- W3136607475 cites W2185533914 @default.
- W3136607475 cites W2263955971 @default.
- W3136607475 cites W2293925160 @default.
- W3136607475 cites W2308166741 @default.
- W3136607475 cites W2474925782 @default.
- W3136607475 cites W2510487013 @default.
- W3136607475 cites W2517600007 @default.
- W3136607475 cites W2519320404 @default.
- W3136607475 cites W2520023585 @default.
- W3136607475 cites W2528353700 @default.
- W3136607475 cites W2541451878 @default.
- W3136607475 cites W2555222200 @default.
- W3136607475 cites W2605602395 @default.
- W3136607475 cites W2606383594 @default.
- W3136607475 cites W2620672017 @default.
- W3136607475 cites W2625168508 @default.
- W3136607475 cites W2771931548 @default.
- W3136607475 cites W2774381817 @default.
- W3136607475 cites W2783478239 @default.
- W3136607475 cites W2791329134 @default.
- W3136607475 cites W2792526072 @default.
- W3136607475 cites W2793071389 @default.
- W3136607475 cites W2804843248 @default.
- W3136607475 cites W2810327927 @default.
- W3136607475 cites W2810345395 @default.
- W3136607475 cites W2810540872 @default.
- W3136607475 cites W2886705458 @default.
- W3136607475 cites W2889701040 @default.
- W3136607475 cites W2897258777 @default.
- W3136607475 cites W2898069375 @default.
- W3136607475 cites W2898533249 @default.
- W3136607475 cites W2901122870 @default.
- W3136607475 cites W2902925785 @default.
- W3136607475 cites W2908471452 @default.
- W3136607475 cites W2912744965 @default.
- W3136607475 cites W2913700743 @default.
- W3136607475 cites W2914254038 @default.
- W3136607475 cites W2922241797 @default.
- W3136607475 cites W2940248808 @default.
- W3136607475 cites W2947732524 @default.
- W3136607475 cites W2952984657 @default.
- W3136607475 cites W2962182762 @default.
- W3136607475 cites W2964594041 @default.
- W3136607475 cites W2968413307 @default.
- W3136607475 cites W2995416367 @default.
- W3136607475 cites W3007040893 @default.
- W3136607475 cites W3007616959 @default.
- W3136607475 cites W3007907254 @default.
- W3136607475 cites W3011011890 @default.
- W3136607475 cites W3014974411 @default.
- W3136607475 cites W3018756325 @default.
- W3136607475 cites W3028595244 @default.
- W3136607475 cites W3036044602 @default.
- W3136607475 cites W3038102268 @default.
- W3136607475 cites W3048162581 @default.
- W3136607475 cites W3085846649 @default.
- W3136607475 cites W3090396243 @default.
- W3136607475 cites W3093315166 @default.
- W3136607475 cites W3095737881 @default.
- W3136607475 cites W3097248275 @default.
- W3136607475 cites W3097250109 @default.
- W3136607475 cites W3108587101 @default.
- W3136607475 cites W3115660834 @default.
- W3136607475 cites W3121642757 @default.
- W3136607475 cites W3123888896 @default.
- W3136607475 cites W3125097119 @default.
- W3136607475 cites W341879454 @default.
- W3136607475 cites W4238961266 @default.
- W3136607475 doi "https://doi.org/10.1109/access.2021.3066329" @default.
- W3136607475 hasPublicationYear "2021" @default.
- W3136607475 type Work @default.
- W3136607475 sameAs 3136607475 @default.
- W3136607475 citedByCount "57" @default.
- W3136607475 countsByYear W31366074752021 @default.
- W3136607475 countsByYear W31366074752022 @default.
- W3136607475 countsByYear W31366074752023 @default.
- W3136607475 crossrefType "journal-article" @default.
- W3136607475 hasAuthorship W3136607475A5001630272 @default.
- W3136607475 hasAuthorship W3136607475A5048636901 @default.
- W3136607475 hasAuthorship W3136607475A5056436780 @default.
- W3136607475 hasAuthorship W3136607475A5067850800 @default.
- W3136607475 hasBestOaLocation W31366074751 @default.
- W3136607475 hasConcept C109718341 @default.
- W3136607475 hasConcept C11413529 @default.
- W3136607475 hasConcept C121332964 @default.