Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136645345> ?p ?o ?g. }
- W3136645345 endingPage "158" @default.
- W3136645345 startingPage "150" @default.
- W3136645345 abstract "Popular computational catalyst design strategies rely on the identification of reactivity descriptors, which can be used along with Brønsted−Evans−Polanyi (BEP) and scaling relations as input to a microkinetic model (MKM) to make predictions for activity or selectivity trends. The main benefit of this approach is related to the inherent dimensionality reduction of the large material space to just a few catalyst descriptors. Conversely, it is well documented that a small set of descriptors is insufficient to capture the intricacies and complexities of a real catalytic system. The inclusion of coverage effects through lateral adsorbate-adsorbate interactions can narrow the gap between simplified descriptor predictions and real systems, but mean-field MKMs cannot properly account for local coverage effects. This shortcoming of the mean-field approximation can be rectified by switching to a lattice-based kinetic Monte Carlo (kMC) method using cluster expansion representation of adsorbate−adsorbate lateral interactions. Using the prototypical CO oxidation reaction as an example, we critically evaluate the benefits of kMC over MKM in terms of trend predictions and computational cost when using only a small set of input parameters. After confirming that in the absence of lateral interactions the kMC and MKM approaches yield identical trends and mechanistic information, we observed substantial differences between the two kinetic models when lateral interactions were introduced. The mean-field implementation applies coverage corrections directly to the descriptors, causing an artificial overprediction of the activity of strongly binding metals. In contrast, the cluster expansion in kMC implementation can differentiate among the highly active metals but it is very sensitive to the set of included interaction parameters. Considering that computational screening relies on a minimal set of descriptors, for which MKM makes reasonable trend predictions at a ca. three orders of magnitude lower computational cost than kMC, the MKM approach does provide a better entry point for computational catalyst design." @default.
- W3136645345 created "2021-03-29" @default.
- W3136645345 creator A5029991019 @default.
- W3136645345 creator A5033705323 @default.
- W3136645345 date "2022-03-01" @default.
- W3136645345 modified "2023-10-17" @default.
- W3136645345 title "Evaluating the benefits of kinetic Monte Carlo and microkinetic modeling for catalyst design studies in the presence of lateral interactions" @default.
- W3136645345 cites W1968918254 @default.
- W3136645345 cites W1969141512 @default.
- W3136645345 cites W1973641880 @default.
- W3136645345 cites W1985041373 @default.
- W3136645345 cites W1985897730 @default.
- W3136645345 cites W1986667289 @default.
- W3136645345 cites W1991630775 @default.
- W3136645345 cites W1996030617 @default.
- W3136645345 cites W2008211756 @default.
- W3136645345 cites W2010188612 @default.
- W3136645345 cites W2017097251 @default.
- W3136645345 cites W2021606335 @default.
- W3136645345 cites W2027688724 @default.
- W3136645345 cites W2031135193 @default.
- W3136645345 cites W2046505730 @default.
- W3136645345 cites W2058910816 @default.
- W3136645345 cites W2074795437 @default.
- W3136645345 cites W2078013940 @default.
- W3136645345 cites W2090918273 @default.
- W3136645345 cites W2131993332 @default.
- W3136645345 cites W2154746844 @default.
- W3136645345 cites W2318584522 @default.
- W3136645345 cites W234870555 @default.
- W3136645345 cites W2472614819 @default.
- W3136645345 cites W2550564757 @default.
- W3136645345 cites W2593663142 @default.
- W3136645345 cites W2594625756 @default.
- W3136645345 cites W2727564863 @default.
- W3136645345 cites W2776469388 @default.
- W3136645345 cites W2784373214 @default.
- W3136645345 cites W2793617409 @default.
- W3136645345 cites W2810314123 @default.
- W3136645345 doi "https://doi.org/10.1016/j.cattod.2021.03.010" @default.
- W3136645345 hasPublicationYear "2022" @default.
- W3136645345 type Work @default.
- W3136645345 sameAs 3136645345 @default.
- W3136645345 citedByCount "10" @default.
- W3136645345 countsByYear W31366453452022 @default.
- W3136645345 countsByYear W31366453452023 @default.
- W3136645345 crossrefType "journal-article" @default.
- W3136645345 hasAuthorship W3136645345A5029991019 @default.
- W3136645345 hasAuthorship W3136645345A5033705323 @default.
- W3136645345 hasBestOaLocation W31366453453 @default.
- W3136645345 hasConcept C105795698 @default.
- W3136645345 hasConcept C111030470 @default.
- W3136645345 hasConcept C121332964 @default.
- W3136645345 hasConcept C121864883 @default.
- W3136645345 hasConcept C147597530 @default.
- W3136645345 hasConcept C154945302 @default.
- W3136645345 hasConcept C161790260 @default.
- W3136645345 hasConcept C17744445 @default.
- W3136645345 hasConcept C185592680 @default.
- W3136645345 hasConcept C186060115 @default.
- W3136645345 hasConcept C19499675 @default.
- W3136645345 hasConcept C199539241 @default.
- W3136645345 hasConcept C2776359362 @default.
- W3136645345 hasConcept C2778999785 @default.
- W3136645345 hasConcept C33923547 @default.
- W3136645345 hasConcept C41008148 @default.
- W3136645345 hasConcept C45786274 @default.
- W3136645345 hasConcept C55493867 @default.
- W3136645345 hasConcept C86803240 @default.
- W3136645345 hasConcept C94625758 @default.
- W3136645345 hasConcept C97355855 @default.
- W3136645345 hasConceptScore W3136645345C105795698 @default.
- W3136645345 hasConceptScore W3136645345C111030470 @default.
- W3136645345 hasConceptScore W3136645345C121332964 @default.
- W3136645345 hasConceptScore W3136645345C121864883 @default.
- W3136645345 hasConceptScore W3136645345C147597530 @default.
- W3136645345 hasConceptScore W3136645345C154945302 @default.
- W3136645345 hasConceptScore W3136645345C161790260 @default.
- W3136645345 hasConceptScore W3136645345C17744445 @default.
- W3136645345 hasConceptScore W3136645345C185592680 @default.
- W3136645345 hasConceptScore W3136645345C186060115 @default.
- W3136645345 hasConceptScore W3136645345C19499675 @default.
- W3136645345 hasConceptScore W3136645345C199539241 @default.
- W3136645345 hasConceptScore W3136645345C2776359362 @default.
- W3136645345 hasConceptScore W3136645345C2778999785 @default.
- W3136645345 hasConceptScore W3136645345C33923547 @default.
- W3136645345 hasConceptScore W3136645345C41008148 @default.
- W3136645345 hasConceptScore W3136645345C45786274 @default.
- W3136645345 hasConceptScore W3136645345C55493867 @default.
- W3136645345 hasConceptScore W3136645345C86803240 @default.
- W3136645345 hasConceptScore W3136645345C94625758 @default.
- W3136645345 hasConceptScore W3136645345C97355855 @default.
- W3136645345 hasFunder F4320306084 @default.
- W3136645345 hasLocation W31366453451 @default.
- W3136645345 hasLocation W31366453452 @default.
- W3136645345 hasLocation W31366453453 @default.
- W3136645345 hasLocation W31366453454 @default.
- W3136645345 hasOpenAccess W3136645345 @default.