Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136686952> ?p ?o ?g. }
- W3136686952 endingPage "e1008831" @default.
- W3136686952 startingPage "e1008831" @default.
- W3136686952 abstract "Ensembling combines the predictions made by individual component base models with the goal of achieving a predictive accuracy that is better than that of any one of the constituent member models. Diversity among the base models in terms of predictions is a crucial criterion in ensembling. However, there are practical instances when the available base models produce highly correlated predictions, because they may have been developed within the same research group or may have been built from the same underlying algorithm. We investigated, via a case study on Fusarium head blight (FHB) on wheat in the U.S., whether ensembles of simple yet highly correlated models for predicting the risk of FHB epidemics, all generated from logistic regression, provided any benefit to predictive performance, despite relatively low levels of base model diversity. Three ensembling methods were explored: soft voting, weighted averaging of smaller subsets of the base models, and penalized regression as a stacking algorithm. Soft voting and weighted model averages were generally better at classification than the base models, though not universally so. The performances of stacked regressions were superior to those of the other two ensembling methods we analyzed in this study. Ensembling simple yet correlated models is computationally feasible and is therefore worth pursuing for models of epidemic risk." @default.
- W3136686952 created "2021-03-29" @default.
- W3136686952 creator A5007177091 @default.
- W3136686952 creator A5032086850 @default.
- W3136686952 creator A5080881771 @default.
- W3136686952 creator A5089830283 @default.
- W3136686952 date "2021-03-15" @default.
- W3136686952 modified "2023-10-10" @default.
- W3136686952 title "Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models" @default.
- W3136686952 cites W1589522534 @default.
- W3136686952 cites W1681521146 @default.
- W3136686952 cites W1796961055 @default.
- W3136686952 cites W1971694788 @default.
- W3136686952 cites W1979006556 @default.
- W3136686952 cites W1987189105 @default.
- W3136686952 cites W1989667116 @default.
- W3136686952 cites W2000633557 @default.
- W3136686952 cites W2009948252 @default.
- W3136686952 cites W2012581803 @default.
- W3136686952 cites W2014364160 @default.
- W3136686952 cites W2016290119 @default.
- W3136686952 cites W2021265452 @default.
- W3136686952 cites W2022718332 @default.
- W3136686952 cites W2028048450 @default.
- W3136686952 cites W2034449719 @default.
- W3136686952 cites W2036213444 @default.
- W3136686952 cites W2050170672 @default.
- W3136686952 cites W2065246124 @default.
- W3136686952 cites W2071167696 @default.
- W3136686952 cites W2082043878 @default.
- W3136686952 cites W2096947242 @default.
- W3136686952 cites W2099679187 @default.
- W3136686952 cites W2116825089 @default.
- W3136686952 cites W2123659706 @default.
- W3136686952 cites W2132383899 @default.
- W3136686952 cites W2134268004 @default.
- W3136686952 cites W2134833702 @default.
- W3136686952 cites W2150446468 @default.
- W3136686952 cites W2155806188 @default.
- W3136686952 cites W2167917621 @default.
- W3136686952 cites W2168623474 @default.
- W3136686952 cites W2235109246 @default.
- W3136686952 cites W2290450438 @default.
- W3136686952 cites W2487770199 @default.
- W3136686952 cites W2518635801 @default.
- W3136686952 cites W2531024673 @default.
- W3136686952 cites W2604976044 @default.
- W3136686952 cites W2611947862 @default.
- W3136686952 cites W2747968860 @default.
- W3136686952 cites W2769146291 @default.
- W3136686952 cites W2787894218 @default.
- W3136686952 cites W2808363984 @default.
- W3136686952 cites W2808471206 @default.
- W3136686952 cites W2808782596 @default.
- W3136686952 cites W2883061377 @default.
- W3136686952 cites W2900640506 @default.
- W3136686952 cites W2904225560 @default.
- W3136686952 cites W2910437673 @default.
- W3136686952 cites W2910705748 @default.
- W3136686952 cites W2918579935 @default.
- W3136686952 cites W2955422913 @default.
- W3136686952 cites W2962839277 @default.
- W3136686952 cites W2979277098 @default.
- W3136686952 cites W2991460415 @default.
- W3136686952 cites W2996216343 @default.
- W3136686952 cites W3034152715 @default.
- W3136686952 cites W3044108481 @default.
- W3136686952 cites W3047361869 @default.
- W3136686952 cites W3048757009 @default.
- W3136686952 cites W3100344990 @default.
- W3136686952 cites W4232478844 @default.
- W3136686952 cites W4233056867 @default.
- W3136686952 cites W429766147 @default.
- W3136686952 doi "https://doi.org/10.1371/journal.pcbi.1008831" @default.
- W3136686952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7993824" @default.
- W3136686952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33720929" @default.
- W3136686952 hasPublicationYear "2021" @default.
- W3136686952 type Work @default.
- W3136686952 sameAs 3136686952 @default.
- W3136686952 citedByCount "9" @default.
- W3136686952 countsByYear W31366869522021 @default.
- W3136686952 countsByYear W31366869522022 @default.
- W3136686952 countsByYear W31366869522023 @default.
- W3136686952 crossrefType "journal-article" @default.
- W3136686952 hasAuthorship W3136686952A5007177091 @default.
- W3136686952 hasAuthorship W3136686952A5032086850 @default.
- W3136686952 hasAuthorship W3136686952A5080881771 @default.
- W3136686952 hasAuthorship W3136686952A5089830283 @default.
- W3136686952 hasBestOaLocation W31366869521 @default.
- W3136686952 hasConcept C105795698 @default.
- W3136686952 hasConcept C111472728 @default.
- W3136686952 hasConcept C119857082 @default.
- W3136686952 hasConcept C124101348 @default.
- W3136686952 hasConcept C134306372 @default.
- W3136686952 hasConcept C136764020 @default.
- W3136686952 hasConcept C138885662 @default.
- W3136686952 hasConcept C151956035 @default.
- W3136686952 hasConcept C153668964 @default.