Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136709923> ?p ?o ?g. }
- W3136709923 endingPage "13" @default.
- W3136709923 startingPage "1" @default.
- W3136709923 abstract "Household load forecasting provides great challenges as a result of high uncertainty in individual consumption of load profile. Traditional models based on machine learning tried to explore uncertainty depending on clustering, spectral analysis, and sparse coding with hand craft features. Recently, deep learning skills like recurrent neural network attempt to learn the uncertainty with one-hot encoding which is too simple and not efficient. In this paper, for the first time, we proposed a multitask deep convolutional neural network for household load forecasting. The baseline of one branch is built on multiscale dilated convolutions for load forecasting. The other branch based on deep convolutional autoencoder is responsible for household profile encoding. In addition, an efficient encoding strategy for household profile is designed that serves a novel feature fusion mechanism integrated into forecasting branch. Our proposed network serves an end-to-end manner in training and inference process. Sufficient ablation studies were conducted to demonstrate effectiveness of innovations and great generalization in point and probabilistic load forecasting at household level, which provides a promising prospect in demand response." @default.
- W3136709923 created "2021-03-29" @default.
- W3136709923 creator A5018451343 @default.
- W3136709923 creator A5046126993 @default.
- W3136709923 creator A5060700361 @default.
- W3136709923 creator A5075328274 @default.
- W3136709923 date "2021-03-15" @default.
- W3136709923 modified "2023-10-15" @default.
- W3136709923 title "Household Electricity Load Forecasting Based on Multitask Convolutional Neural Network with Profile Encoding" @default.
- W3136709923 cites W1499220949 @default.
- W3136709923 cites W1964984358 @default.
- W3136709923 cites W1974712709 @default.
- W3136709923 cites W1975404935 @default.
- W3136709923 cites W2008084603 @default.
- W3136709923 cites W2032161710 @default.
- W3136709923 cites W2041488098 @default.
- W3136709923 cites W2046185460 @default.
- W3136709923 cites W2067328650 @default.
- W3136709923 cites W2068438324 @default.
- W3136709923 cites W2172174166 @default.
- W3136709923 cites W2209508536 @default.
- W3136709923 cites W2220560459 @default.
- W3136709923 cites W2232980359 @default.
- W3136709923 cites W2269227734 @default.
- W3136709923 cites W2275088575 @default.
- W3136709923 cites W2297152540 @default.
- W3136709923 cites W2313169588 @default.
- W3136709923 cites W2343586331 @default.
- W3136709923 cites W2597866042 @default.
- W3136709923 cites W2611767272 @default.
- W3136709923 cites W2617638177 @default.
- W3136709923 cites W2734777338 @default.
- W3136709923 cites W2754252319 @default.
- W3136709923 cites W2774966631 @default.
- W3136709923 cites W2786918196 @default.
- W3136709923 cites W2790566149 @default.
- W3136709923 cites W2791111686 @default.
- W3136709923 cites W2807821935 @default.
- W3136709923 cites W2884238387 @default.
- W3136709923 cites W2894793845 @default.
- W3136709923 cites W2899494475 @default.
- W3136709923 cites W2899749844 @default.
- W3136709923 cites W2902421512 @default.
- W3136709923 cites W2906033034 @default.
- W3136709923 cites W2917883546 @default.
- W3136709923 cites W2938886060 @default.
- W3136709923 cites W2954123905 @default.
- W3136709923 cites W2964107296 @default.
- W3136709923 cites W2972961631 @default.
- W3136709923 cites W2999869395 @default.
- W3136709923 cites W3002282382 @default.
- W3136709923 cites W3007907254 @default.
- W3136709923 cites W3047313329 @default.
- W3136709923 cites W3080167729 @default.
- W3136709923 cites W3083389769 @default.
- W3136709923 cites W3087462960 @default.
- W3136709923 cites W3095364765 @default.
- W3136709923 cites W3096616939 @default.
- W3136709923 cites W3105286923 @default.
- W3136709923 cites W3120283405 @default.
- W3136709923 cites W3128617977 @default.
- W3136709923 cites W4255316375 @default.
- W3136709923 cites W769431358 @default.
- W3136709923 doi "https://doi.org/10.1155/2021/6661798" @default.
- W3136709923 hasPublicationYear "2021" @default.
- W3136709923 type Work @default.
- W3136709923 sameAs 3136709923 @default.
- W3136709923 citedByCount "1" @default.
- W3136709923 countsByYear W31367099232022 @default.
- W3136709923 crossrefType "journal-article" @default.
- W3136709923 hasAuthorship W3136709923A5018451343 @default.
- W3136709923 hasAuthorship W3136709923A5046126993 @default.
- W3136709923 hasAuthorship W3136709923A5060700361 @default.
- W3136709923 hasAuthorship W3136709923A5075328274 @default.
- W3136709923 hasBestOaLocation W31367099231 @default.
- W3136709923 hasConcept C101738243 @default.
- W3136709923 hasConcept C105795698 @default.
- W3136709923 hasConcept C108583219 @default.
- W3136709923 hasConcept C119857082 @default.
- W3136709923 hasConcept C122282355 @default.
- W3136709923 hasConcept C125411270 @default.
- W3136709923 hasConcept C127413603 @default.
- W3136709923 hasConcept C138885662 @default.
- W3136709923 hasConcept C154945302 @default.
- W3136709923 hasConcept C179518139 @default.
- W3136709923 hasConcept C193809577 @default.
- W3136709923 hasConcept C2776214188 @default.
- W3136709923 hasConcept C2776401178 @default.
- W3136709923 hasConcept C33923547 @default.
- W3136709923 hasConcept C41008148 @default.
- W3136709923 hasConcept C41895202 @default.
- W3136709923 hasConcept C42475967 @default.
- W3136709923 hasConcept C49937458 @default.
- W3136709923 hasConcept C81363708 @default.
- W3136709923 hasConceptScore W3136709923C101738243 @default.
- W3136709923 hasConceptScore W3136709923C105795698 @default.
- W3136709923 hasConceptScore W3136709923C108583219 @default.
- W3136709923 hasConceptScore W3136709923C119857082 @default.