Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136736749> ?p ?o ?g. }
- W3136736749 endingPage "105013" @default.
- W3136736749 startingPage "105013" @default.
- W3136736749 abstract "A Machine Learning approach to the problem of calculating the proton paths inside a scanned object in proton Computed Tomography is presented. The method is developed in order to mitigate the loss in both spatial resolution and quantitative integrity of the reconstructed images caused by multiple Coulomb scattering of protons traversing the matter. Two Machine Learning models were used: a forward neural network (NN) and the XGBoost method. A heuristic approach, based on track averaging was also implemented in order to evaluate the accuracy limits on track calculation, imposed by the statistical nature of the scattering. Synthetic data from anthropomorphic voxelized phantoms, generated by the Monte Carlo (MC) Geant4 code, were utilized to train the models and evaluate their accuracy, in comparison to a widely used analytical method that is based on likelihood maximization and Fermi-Eyges scattering model. Both NN and XGBoost model were found to perform very close or at the accuracy limit, further improving the accuracy of the analytical method (by 12% in the typical case of 200 MeV protons on 20 cm of water object), especially for protons scattered at large angles. Inclusion of the material information along the path in terms of radiation length did not show improvement in accuracy for the phantoms simulated in the study. A NN was also constructed to predict the error in path calculation, thus enabling a criterion to filter out proton events that may have a negative effect on the quality of the reconstructed image. By parametrizing a large set of synthetic data, the Machine Learning models were proved capable to bring-in an indirect and time efficient way-the accuracy of the MC method into the problem of proton tracking." @default.
- W3136736749 created "2021-03-29" @default.
- W3136736749 creator A5008391218 @default.
- W3136736749 creator A5010368060 @default.
- W3136736749 creator A5019964627 @default.
- W3136736749 creator A5030037960 @default.
- W3136736749 creator A5089741899 @default.
- W3136736749 date "2021-05-14" @default.
- W3136736749 modified "2023-09-24" @default.
- W3136736749 title "Machine learning for proton path tracking in proton computed tomography" @default.
- W3136736749 cites W1923698600 @default.
- W3136736749 cites W1973369221 @default.
- W3136736749 cites W2006418027 @default.
- W3136736749 cites W2025139166 @default.
- W3136736749 cites W2026604662 @default.
- W3136736749 cites W2032765857 @default.
- W3136736749 cites W2035004977 @default.
- W3136736749 cites W2083020217 @default.
- W3136736749 cites W2103066772 @default.
- W3136736749 cites W2128158076 @default.
- W3136736749 cites W2548589138 @default.
- W3136736749 cites W2766781022 @default.
- W3136736749 cites W2896564495 @default.
- W3136736749 cites W2911306377 @default.
- W3136736749 cites W2969768248 @default.
- W3136736749 cites W3004971828 @default.
- W3136736749 cites W3026922903 @default.
- W3136736749 cites W3102476541 @default.
- W3136736749 cites W3199326566 @default.
- W3136736749 doi "https://doi.org/10.1088/1361-6560/abf1fd" @default.
- W3136736749 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33765674" @default.
- W3136736749 hasPublicationYear "2021" @default.
- W3136736749 type Work @default.
- W3136736749 sameAs 3136736749 @default.
- W3136736749 citedByCount "1" @default.
- W3136736749 countsByYear W31367367492021 @default.
- W3136736749 crossrefType "journal-article" @default.
- W3136736749 hasAuthorship W3136736749A5008391218 @default.
- W3136736749 hasAuthorship W3136736749A5010368060 @default.
- W3136736749 hasAuthorship W3136736749A5019964627 @default.
- W3136736749 hasAuthorship W3136736749A5030037960 @default.
- W3136736749 hasAuthorship W3136736749A5089741899 @default.
- W3136736749 hasBestOaLocation W31367367492 @default.
- W3136736749 hasConcept C105795698 @default.
- W3136736749 hasConcept C11413529 @default.
- W3136736749 hasConcept C120665830 @default.
- W3136736749 hasConcept C121332964 @default.
- W3136736749 hasConcept C124101348 @default.
- W3136736749 hasConcept C129045301 @default.
- W3136736749 hasConcept C154945302 @default.
- W3136736749 hasConcept C15744967 @default.
- W3136736749 hasConcept C185544564 @default.
- W3136736749 hasConcept C191486275 @default.
- W3136736749 hasConcept C19417346 @default.
- W3136736749 hasConcept C19499675 @default.
- W3136736749 hasConcept C199360897 @default.
- W3136736749 hasConcept C2775936607 @default.
- W3136736749 hasConcept C2777735758 @default.
- W3136736749 hasConcept C33923547 @default.
- W3136736749 hasConcept C41008148 @default.
- W3136736749 hasConcept C54516573 @default.
- W3136736749 hasConcept C60478076 @default.
- W3136736749 hasConceptScore W3136736749C105795698 @default.
- W3136736749 hasConceptScore W3136736749C11413529 @default.
- W3136736749 hasConceptScore W3136736749C120665830 @default.
- W3136736749 hasConceptScore W3136736749C121332964 @default.
- W3136736749 hasConceptScore W3136736749C124101348 @default.
- W3136736749 hasConceptScore W3136736749C129045301 @default.
- W3136736749 hasConceptScore W3136736749C154945302 @default.
- W3136736749 hasConceptScore W3136736749C15744967 @default.
- W3136736749 hasConceptScore W3136736749C185544564 @default.
- W3136736749 hasConceptScore W3136736749C191486275 @default.
- W3136736749 hasConceptScore W3136736749C19417346 @default.
- W3136736749 hasConceptScore W3136736749C19499675 @default.
- W3136736749 hasConceptScore W3136736749C199360897 @default.
- W3136736749 hasConceptScore W3136736749C2775936607 @default.
- W3136736749 hasConceptScore W3136736749C2777735758 @default.
- W3136736749 hasConceptScore W3136736749C33923547 @default.
- W3136736749 hasConceptScore W3136736749C41008148 @default.
- W3136736749 hasConceptScore W3136736749C54516573 @default.
- W3136736749 hasConceptScore W3136736749C60478076 @default.
- W3136736749 hasFunder F4320321487 @default.
- W3136736749 hasFunder F4320334627 @default.
- W3136736749 hasIssue "10" @default.
- W3136736749 hasLocation W31367367491 @default.
- W3136736749 hasLocation W31367367492 @default.
- W3136736749 hasOpenAccess W3136736749 @default.
- W3136736749 hasPrimaryLocation W31367367491 @default.
- W3136736749 hasRelatedWork W10697402 @default.
- W3136736749 hasRelatedWork W10783815 @default.
- W3136736749 hasRelatedWork W2636205 @default.
- W3136736749 hasRelatedWork W466625 @default.
- W3136736749 hasRelatedWork W5373012 @default.
- W3136736749 hasRelatedWork W5612581 @default.
- W3136736749 hasRelatedWork W6069216 @default.
- W3136736749 hasRelatedWork W6390700 @default.
- W3136736749 hasRelatedWork W8337467 @default.
- W3136736749 hasRelatedWork W8251319 @default.