Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136755176> ?p ?o ?g. }
- W3136755176 endingPage "45863" @default.
- W3136755176 startingPage "45853" @default.
- W3136755176 abstract "Image deblurring aims to restore the latent sharp image from the blurred one. In recent years, some learning-based image deblurring methods have achieved significant advances. However, the tradeoff between the texture details and model parameters is still a crucial issue. In this paper, we propose a novel deblurring method based on two-level wavelet-based convolutional neural network (CNN), which embeds discrete wavelet transform (DWT) to separate the image context and texture information and reduces the complexity of calculation. Furthermore, we modify the Inception module by adding pixels-wise attention (PA) mechanism and channel scaling factor to make each convolution kernel have different weights, which increase the receptive field while significantly reduce the parameters of the module. Qualitative and quantitative evaluation on real-word and synthetic datasets shows that the deblurring performance of our method is comparable to the state-of-the-art algorithms. Moreover, compared to the traditional learning-based deblurring method, our model has fewer parameters." @default.
- W3136755176 created "2021-03-29" @default.
- W3136755176 creator A5020031031 @default.
- W3136755176 creator A5040283680 @default.
- W3136755176 creator A5086491608 @default.
- W3136755176 date "2021-01-01" @default.
- W3136755176 modified "2023-09-23" @default.
- W3136755176 title "Two-Level Wavelet-Based Convolutional Neural Network for Image Deblurring" @default.
- W3136755176 cites W1598936309 @default.
- W3136755176 cites W1604428010 @default.
- W3136755176 cites W1916935112 @default.
- W3136755176 cites W1965570176 @default.
- W3136755176 cites W1988446025 @default.
- W3136755176 cites W2024701229 @default.
- W3136755176 cites W2026214447 @default.
- W3136755176 cites W2039495738 @default.
- W3136755176 cites W2052229187 @default.
- W3136755176 cites W2055616670 @default.
- W3136755176 cites W2057020849 @default.
- W3136755176 cites W2079756223 @default.
- W3136755176 cites W2106923440 @default.
- W3136755176 cites W2128848833 @default.
- W3136755176 cites W2133665775 @default.
- W3136755176 cites W2560533888 @default.
- W3136755176 cites W2564023417 @default.
- W3136755176 cites W2738579427 @default.
- W3136755176 cites W2741196023 @default.
- W3136755176 cites W2759428153 @default.
- W3136755176 cites W2776107444 @default.
- W3136755176 cites W2798735168 @default.
- W3136755176 cites W2899691808 @default.
- W3136755176 cites W2949386440 @default.
- W3136755176 cites W2955179830 @default.
- W3136755176 cites W2963312584 @default.
- W3136755176 cites W2963494934 @default.
- W3136755176 cites W2963667985 @default.
- W3136755176 cites W2965217508 @default.
- W3136755176 cites W2967273822 @default.
- W3136755176 cites W2970530557 @default.
- W3136755176 cites W2982795046 @default.
- W3136755176 cites W3014765916 @default.
- W3136755176 cites W3034347085 @default.
- W3136755176 doi "https://doi.org/10.1109/access.2021.3067055" @default.
- W3136755176 hasPublicationYear "2021" @default.
- W3136755176 type Work @default.
- W3136755176 sameAs 3136755176 @default.
- W3136755176 citedByCount "7" @default.
- W3136755176 countsByYear W31367551762021 @default.
- W3136755176 countsByYear W31367551762022 @default.
- W3136755176 countsByYear W31367551762023 @default.
- W3136755176 crossrefType "journal-article" @default.
- W3136755176 hasAuthorship W3136755176A5020031031 @default.
- W3136755176 hasAuthorship W3136755176A5040283680 @default.
- W3136755176 hasAuthorship W3136755176A5086491608 @default.
- W3136755176 hasBestOaLocation W31367551761 @default.
- W3136755176 hasConcept C106430172 @default.
- W3136755176 hasConcept C114614502 @default.
- W3136755176 hasConcept C115961682 @default.
- W3136755176 hasConcept C151730666 @default.
- W3136755176 hasConcept C153180895 @default.
- W3136755176 hasConcept C154945302 @default.
- W3136755176 hasConcept C160633673 @default.
- W3136755176 hasConcept C2777693668 @default.
- W3136755176 hasConcept C2779343474 @default.
- W3136755176 hasConcept C31972630 @default.
- W3136755176 hasConcept C33923547 @default.
- W3136755176 hasConcept C41008148 @default.
- W3136755176 hasConcept C45347329 @default.
- W3136755176 hasConcept C47432892 @default.
- W3136755176 hasConcept C50644808 @default.
- W3136755176 hasConcept C74193536 @default.
- W3136755176 hasConcept C81363708 @default.
- W3136755176 hasConcept C86803240 @default.
- W3136755176 hasConcept C9417928 @default.
- W3136755176 hasConceptScore W3136755176C106430172 @default.
- W3136755176 hasConceptScore W3136755176C114614502 @default.
- W3136755176 hasConceptScore W3136755176C115961682 @default.
- W3136755176 hasConceptScore W3136755176C151730666 @default.
- W3136755176 hasConceptScore W3136755176C153180895 @default.
- W3136755176 hasConceptScore W3136755176C154945302 @default.
- W3136755176 hasConceptScore W3136755176C160633673 @default.
- W3136755176 hasConceptScore W3136755176C2777693668 @default.
- W3136755176 hasConceptScore W3136755176C2779343474 @default.
- W3136755176 hasConceptScore W3136755176C31972630 @default.
- W3136755176 hasConceptScore W3136755176C33923547 @default.
- W3136755176 hasConceptScore W3136755176C41008148 @default.
- W3136755176 hasConceptScore W3136755176C45347329 @default.
- W3136755176 hasConceptScore W3136755176C47432892 @default.
- W3136755176 hasConceptScore W3136755176C50644808 @default.
- W3136755176 hasConceptScore W3136755176C74193536 @default.
- W3136755176 hasConceptScore W3136755176C81363708 @default.
- W3136755176 hasConceptScore W3136755176C86803240 @default.
- W3136755176 hasConceptScore W3136755176C9417928 @default.
- W3136755176 hasFunder F4320321001 @default.
- W3136755176 hasLocation W31367551761 @default.
- W3136755176 hasOpenAccess W3136755176 @default.
- W3136755176 hasPrimaryLocation W31367551761 @default.
- W3136755176 hasRelatedWork W2060018053 @default.