Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136755792> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3136755792 abstract "Correctly identifying the semantic label of a table column (e.g. artist ) or the domain of a tuple (e.g. Song) is crucial for data science tasks, such as schema matching, data cleaning and discovery. Existing data preparation and integration systems are known to make mistakes that need to be corrected by humans, which is labor-intensive and expensive especially at scale [19], [20], [25], [9], [8]. The accuracy is also known to suffer on dirty data. In this paper we define and evaluate tabular embeddings to help increase the accuracy.Embeddings, is a well-known dimensionality reduction technique, usually applied to represent (one-dimensional) text documents/sentences as vectors for further analytics [28], [7], [23]. Using embeddings lowers dimensionality, as well as the models trained with embeddings often exhibit higher accuracy, compared to the same trained without such, because the embeddings vectors store the context information. Our 2-dimensional embeddings are more suitable for tables rather than text. We justify their efficiency on fundamental tasks on tables such as classifying columns and tuples.We perform an extensive experimental evaluation and compare the Neural Network trained with tabular embeddings against the same trained without such embeddings. We report significant accuracy gains in tuple classification when using the Neural Network trained with our tabular embeddings - up to 17.6% delta in F-measure for Songs compared with the same without our embeddings. For training and evaluating all our embeddings and models, we use a large-scale WebTables dataset having ≈15 million tables coming from ≈ 248K English Web sources [12]." @default.
- W3136755792 created "2021-03-29" @default.
- W3136755792 creator A5047938200 @default.
- W3136755792 creator A5071549682 @default.
- W3136755792 date "2020-12-10" @default.
- W3136755792 modified "2023-10-17" @default.
- W3136755792 title "Towards Tabular Embeddings, Training the Relational Models" @default.
- W3136755792 cites W1964049590 @default.
- W3136755792 cites W2003575867 @default.
- W3136755792 cites W2008896880 @default.
- W3136755792 cites W2066232799 @default.
- W3136755792 cites W2092486351 @default.
- W3136755792 cites W2108267498 @default.
- W3136755792 cites W2153579005 @default.
- W3136755792 cites W2171308734 @default.
- W3136755792 cites W2400847108 @default.
- W3136755792 cites W2407983160 @default.
- W3136755792 cites W2613788219 @default.
- W3136755792 cites W2616271757 @default.
- W3136755792 cites W2896457183 @default.
- W3136755792 cites W2899286282 @default.
- W3136755792 cites W2914901005 @default.
- W3136755792 cites W3031051334 @default.
- W3136755792 doi "https://doi.org/10.1109/bigdata50022.2020.9377769" @default.
- W3136755792 hasPublicationYear "2020" @default.
- W3136755792 type Work @default.
- W3136755792 sameAs 3136755792 @default.
- W3136755792 citedByCount "0" @default.
- W3136755792 crossrefType "proceedings-article" @default.
- W3136755792 hasAuthorship W3136755792A5047938200 @default.
- W3136755792 hasAuthorship W3136755792A5071549682 @default.
- W3136755792 hasConcept C111030470 @default.
- W3136755792 hasConcept C118615104 @default.
- W3136755792 hasConcept C118930307 @default.
- W3136755792 hasConcept C119857082 @default.
- W3136755792 hasConcept C124101348 @default.
- W3136755792 hasConcept C151730666 @default.
- W3136755792 hasConcept C154945302 @default.
- W3136755792 hasConcept C23123220 @default.
- W3136755792 hasConcept C2777327318 @default.
- W3136755792 hasConcept C2779343474 @default.
- W3136755792 hasConcept C33923547 @default.
- W3136755792 hasConcept C41008148 @default.
- W3136755792 hasConcept C41608201 @default.
- W3136755792 hasConcept C50644808 @default.
- W3136755792 hasConcept C52146309 @default.
- W3136755792 hasConcept C70518039 @default.
- W3136755792 hasConcept C72634772 @default.
- W3136755792 hasConcept C81363708 @default.
- W3136755792 hasConcept C86803240 @default.
- W3136755792 hasConceptScore W3136755792C111030470 @default.
- W3136755792 hasConceptScore W3136755792C118615104 @default.
- W3136755792 hasConceptScore W3136755792C118930307 @default.
- W3136755792 hasConceptScore W3136755792C119857082 @default.
- W3136755792 hasConceptScore W3136755792C124101348 @default.
- W3136755792 hasConceptScore W3136755792C151730666 @default.
- W3136755792 hasConceptScore W3136755792C154945302 @default.
- W3136755792 hasConceptScore W3136755792C23123220 @default.
- W3136755792 hasConceptScore W3136755792C2777327318 @default.
- W3136755792 hasConceptScore W3136755792C2779343474 @default.
- W3136755792 hasConceptScore W3136755792C33923547 @default.
- W3136755792 hasConceptScore W3136755792C41008148 @default.
- W3136755792 hasConceptScore W3136755792C41608201 @default.
- W3136755792 hasConceptScore W3136755792C50644808 @default.
- W3136755792 hasConceptScore W3136755792C52146309 @default.
- W3136755792 hasConceptScore W3136755792C70518039 @default.
- W3136755792 hasConceptScore W3136755792C72634772 @default.
- W3136755792 hasConceptScore W3136755792C81363708 @default.
- W3136755792 hasConceptScore W3136755792C86803240 @default.
- W3136755792 hasLocation W31367557921 @default.
- W3136755792 hasOpenAccess W3136755792 @default.
- W3136755792 hasPrimaryLocation W31367557921 @default.
- W3136755792 hasRelatedWork W11991885 @default.
- W3136755792 hasRelatedWork W12723491 @default.
- W3136755792 hasRelatedWork W13109368 @default.
- W3136755792 hasRelatedWork W13303079 @default.
- W3136755792 hasRelatedWork W2990258 @default.
- W3136755792 hasRelatedWork W3938471 @default.
- W3136755792 hasRelatedWork W5668360 @default.
- W3136755792 hasRelatedWork W6984603 @default.
- W3136755792 hasRelatedWork W7390500 @default.
- W3136755792 hasRelatedWork W1916988 @default.
- W3136755792 isParatext "false" @default.
- W3136755792 isRetracted "false" @default.
- W3136755792 magId "3136755792" @default.
- W3136755792 workType "article" @default.