Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136758974> ?p ?o ?g. }
- W3136758974 endingPage "100010" @default.
- W3136758974 startingPage "100010" @default.
- W3136758974 abstract "In future smart energy systems, consumers are expected to change their load patterns as they become a significant source of flexibility. To ensure reliable load profile forecasts for long-term energy planning, conventional classification approaches will not hold and more advanced solutions are required. In this article, we propose an automatic, data-driven clustering methodology that accounts for heterogeneity in electricity consumers’ load profiles using unsupervised learning. We consider hourly load measurements from 9412 smart-meters from the commercial and industrial sector in Denmark. A wavelet transform is applied to min-max scaled load data, and the extracted wavelet coefficients are used as input to the K-means clustering algorithm. Through cluster validation, eight clearly distinct load profiles are identified and compared to the industry classification of the cluster constituents. Finally, the flexibility potential is traced for each cluster." @default.
- W3136758974 created "2021-03-29" @default.
- W3136758974 creator A5027355838 @default.
- W3136758974 creator A5034701325 @default.
- W3136758974 creator A5054421707 @default.
- W3136758974 creator A5064847160 @default.
- W3136758974 date "2021-05-01" @default.
- W3136758974 modified "2023-10-02" @default.
- W3136758974 title "Clustering commercial and industrial load patterns for long-term energy planning" @default.
- W3136758974 cites W1973763631 @default.
- W3136758974 cites W1977632775 @default.
- W3136758974 cites W1981510168 @default.
- W3136758974 cites W1989866797 @default.
- W3136758974 cites W1997729648 @default.
- W3136758974 cites W2038621246 @default.
- W3136758974 cites W2042237552 @default.
- W3136758974 cites W2043861107 @default.
- W3136758974 cites W2066384055 @default.
- W3136758974 cites W2074606535 @default.
- W3136758974 cites W2078278729 @default.
- W3136758974 cites W2079697937 @default.
- W3136758974 cites W2103430225 @default.
- W3136758974 cites W2103709171 @default.
- W3136758974 cites W2117604780 @default.
- W3136758974 cites W2127732301 @default.
- W3136758974 cites W2128403045 @default.
- W3136758974 cites W2155297377 @default.
- W3136758974 cites W2155556726 @default.
- W3136758974 cites W2170226372 @default.
- W3136758974 cites W2170820890 @default.
- W3136758974 cites W2307871843 @default.
- W3136758974 cites W2328146686 @default.
- W3136758974 cites W2353295680 @default.
- W3136758974 cites W2513590440 @default.
- W3136758974 cites W2523841471 @default.
- W3136758974 cites W2586996296 @default.
- W3136758974 cites W2604964384 @default.
- W3136758974 cites W2611424300 @default.
- W3136758974 cites W2616497172 @default.
- W3136758974 cites W2793458718 @default.
- W3136758974 cites W2793814213 @default.
- W3136758974 cites W2795856038 @default.
- W3136758974 cites W2800957646 @default.
- W3136758974 cites W2802011801 @default.
- W3136758974 cites W2904206259 @default.
- W3136758974 cites W2904225910 @default.
- W3136758974 cites W2964007245 @default.
- W3136758974 cites W2964444695 @default.
- W3136758974 cites W2992512121 @default.
- W3136758974 cites W3141396188 @default.
- W3136758974 doi "https://doi.org/10.1016/j.segy.2021.100010" @default.
- W3136758974 hasPublicationYear "2021" @default.
- W3136758974 type Work @default.
- W3136758974 sameAs 3136758974 @default.
- W3136758974 citedByCount "13" @default.
- W3136758974 countsByYear W31367589742021 @default.
- W3136758974 countsByYear W31367589742022 @default.
- W3136758974 countsByYear W31367589742023 @default.
- W3136758974 crossrefType "journal-article" @default.
- W3136758974 hasAuthorship W3136758974A5027355838 @default.
- W3136758974 hasAuthorship W3136758974A5034701325 @default.
- W3136758974 hasAuthorship W3136758974A5054421707 @default.
- W3136758974 hasAuthorship W3136758974A5064847160 @default.
- W3136758974 hasBestOaLocation W31367589741 @default.
- W3136758974 hasConcept C10558101 @default.
- W3136758974 hasConcept C105795698 @default.
- W3136758974 hasConcept C119599485 @default.
- W3136758974 hasConcept C121332964 @default.
- W3136758974 hasConcept C124101348 @default.
- W3136758974 hasConcept C127413603 @default.
- W3136758974 hasConcept C154945302 @default.
- W3136758974 hasConcept C164866538 @default.
- W3136758974 hasConcept C186370098 @default.
- W3136758974 hasConcept C196216189 @default.
- W3136758974 hasConcept C199360897 @default.
- W3136758974 hasConcept C206658404 @default.
- W3136758974 hasConcept C2777908891 @default.
- W3136758974 hasConcept C2780598303 @default.
- W3136758974 hasConcept C33923547 @default.
- W3136758974 hasConcept C41008148 @default.
- W3136758974 hasConcept C47432892 @default.
- W3136758974 hasConcept C61797465 @default.
- W3136758974 hasConcept C62520636 @default.
- W3136758974 hasConcept C73555534 @default.
- W3136758974 hasConceptScore W3136758974C10558101 @default.
- W3136758974 hasConceptScore W3136758974C105795698 @default.
- W3136758974 hasConceptScore W3136758974C119599485 @default.
- W3136758974 hasConceptScore W3136758974C121332964 @default.
- W3136758974 hasConceptScore W3136758974C124101348 @default.
- W3136758974 hasConceptScore W3136758974C127413603 @default.
- W3136758974 hasConceptScore W3136758974C154945302 @default.
- W3136758974 hasConceptScore W3136758974C164866538 @default.
- W3136758974 hasConceptScore W3136758974C186370098 @default.
- W3136758974 hasConceptScore W3136758974C196216189 @default.
- W3136758974 hasConceptScore W3136758974C199360897 @default.
- W3136758974 hasConceptScore W3136758974C206658404 @default.
- W3136758974 hasConceptScore W3136758974C2777908891 @default.
- W3136758974 hasConceptScore W3136758974C2780598303 @default.