Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136759842> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3136759842 endingPage "139" @default.
- W3136759842 startingPage "139" @default.
- W3136759842 abstract "The objective of systematic reviews is to address a research question by summarizing relevant studies following a detailed, comprehensive, and transparent plan and search protocol to reduce bias. Systematic reviews are very useful in the biomedical and healthcare domain; however, the data extraction phase of the systematic review process necessitates substantive expertise and is labour-intensive and time-consuming. The aim of this work is to partially automate the process of building systematic radiotherapy treatment literature reviews by summarizing the required data elements of geometric errors of radiotherapy from relevant literature using machine learning and natural language processing (NLP) approaches. A framework is developed in this study that initially builds a training corpus by extracting sentences containing different types of geometric errors of radiotherapy from relevant publications. The publications are retrieved from PubMed following a given set of rules defined by a domain expert. Subsequently, the method develops a training corpus by extracting relevant sentences using a sentence similarity measure. A support vector machine (SVM) classifier is then trained on this training corpus to extract the sentences from new publications which contain relevant geometric errors. To demonstrate the proposed approach, we have used 60 publications containing geometric errors in radiotherapy to automatically extract the sentences stating the mean and standard deviation of different types of errors between planned and executed radiotherapy. The experimental results show that the recall and precision of the proposed framework are, respectively, 97% and 72%. The results clearly show that the framework is able to extract almost all sentences containing required data of geometric errors." @default.
- W3136759842 created "2021-03-29" @default.
- W3136759842 creator A5034222175 @default.
- W3136759842 creator A5051637191 @default.
- W3136759842 creator A5089900113 @default.
- W3136759842 date "2021-03-24" @default.
- W3136759842 modified "2023-09-25" @default.
- W3136759842 title "A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature" @default.
- W3136759842 cites W1034374084 @default.
- W3136759842 cites W1597386173 @default.
- W3136759842 cites W1629765770 @default.
- W3136759842 cites W1949819223 @default.
- W3136759842 cites W1967308810 @default.
- W3136759842 cites W2008638605 @default.
- W3136759842 cites W2103013436 @default.
- W3136759842 cites W2114039834 @default.
- W3136759842 cites W2122062060 @default.
- W3136759842 cites W2138482836 @default.
- W3136759842 cites W2160987310 @default.
- W3136759842 cites W2611929813 @default.
- W3136759842 cites W2621403187 @default.
- W3136759842 cites W2624380710 @default.
- W3136759842 cites W2741216199 @default.
- W3136759842 cites W2768488789 @default.
- W3136759842 cites W2786205708 @default.
- W3136759842 cites W2894964113 @default.
- W3136759842 cites W2911489562 @default.
- W3136759842 cites W2972751837 @default.
- W3136759842 cites W2982597005 @default.
- W3136759842 cites W3014938739 @default.
- W3136759842 cites W3022240387 @default.
- W3136759842 cites W3072530867 @default.
- W3136759842 doi "https://doi.org/10.3390/info12040139" @default.
- W3136759842 hasPublicationYear "2021" @default.
- W3136759842 type Work @default.
- W3136759842 sameAs 3136759842 @default.
- W3136759842 citedByCount "1" @default.
- W3136759842 countsByYear W31367598422022 @default.
- W3136759842 crossrefType "journal-article" @default.
- W3136759842 hasAuthorship W3136759842A5034222175 @default.
- W3136759842 hasAuthorship W3136759842A5051637191 @default.
- W3136759842 hasAuthorship W3136759842A5089900113 @default.
- W3136759842 hasBestOaLocation W31367598421 @default.
- W3136759842 hasConcept C111919701 @default.
- W3136759842 hasConcept C119857082 @default.
- W3136759842 hasConcept C12267149 @default.
- W3136759842 hasConcept C154945302 @default.
- W3136759842 hasConcept C177264268 @default.
- W3136759842 hasConcept C17744445 @default.
- W3136759842 hasConcept C189708586 @default.
- W3136759842 hasConcept C199360897 @default.
- W3136759842 hasConcept C199539241 @default.
- W3136759842 hasConcept C204321447 @default.
- W3136759842 hasConcept C2777530160 @default.
- W3136759842 hasConcept C2779473830 @default.
- W3136759842 hasConcept C41008148 @default.
- W3136759842 hasConcept C81669768 @default.
- W3136759842 hasConcept C95623464 @default.
- W3136759842 hasConcept C98045186 @default.
- W3136759842 hasConceptScore W3136759842C111919701 @default.
- W3136759842 hasConceptScore W3136759842C119857082 @default.
- W3136759842 hasConceptScore W3136759842C12267149 @default.
- W3136759842 hasConceptScore W3136759842C154945302 @default.
- W3136759842 hasConceptScore W3136759842C177264268 @default.
- W3136759842 hasConceptScore W3136759842C17744445 @default.
- W3136759842 hasConceptScore W3136759842C189708586 @default.
- W3136759842 hasConceptScore W3136759842C199360897 @default.
- W3136759842 hasConceptScore W3136759842C199539241 @default.
- W3136759842 hasConceptScore W3136759842C204321447 @default.
- W3136759842 hasConceptScore W3136759842C2777530160 @default.
- W3136759842 hasConceptScore W3136759842C2779473830 @default.
- W3136759842 hasConceptScore W3136759842C41008148 @default.
- W3136759842 hasConceptScore W3136759842C81669768 @default.
- W3136759842 hasConceptScore W3136759842C95623464 @default.
- W3136759842 hasConceptScore W3136759842C98045186 @default.
- W3136759842 hasIssue "4" @default.
- W3136759842 hasLocation W31367598421 @default.
- W3136759842 hasLocation W31367598422 @default.
- W3136759842 hasLocation W31367598423 @default.
- W3136759842 hasOpenAccess W3136759842 @default.
- W3136759842 hasPrimaryLocation W31367598421 @default.
- W3136759842 hasRelatedWork W1978971213 @default.
- W3136759842 hasRelatedWork W1996541855 @default.
- W3136759842 hasRelatedWork W2101819884 @default.
- W3136759842 hasRelatedWork W2368425165 @default.
- W3136759842 hasRelatedWork W2937631562 @default.
- W3136759842 hasRelatedWork W2961085424 @default.
- W3136759842 hasRelatedWork W2979979539 @default.
- W3136759842 hasRelatedWork W3194539120 @default.
- W3136759842 hasRelatedWork W3195168932 @default.
- W3136759842 hasRelatedWork W4361795583 @default.
- W3136759842 hasVolume "12" @default.
- W3136759842 isParatext "false" @default.
- W3136759842 isRetracted "false" @default.
- W3136759842 magId "3136759842" @default.
- W3136759842 workType "article" @default.