Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136768428> ?p ?o ?g. }
- W3136768428 endingPage "249" @default.
- W3136768428 startingPage "238" @default.
- W3136768428 abstract "In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone marrow (BM) histopathology is assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number of affected genes per pathway, demonstrating the algorithms' ability to identify relevant morphologic patterns. By converting regression models to texture and cellular composition, we reproduced the classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study highlights the potential of linking deep BM histopathology with genetics and clinical variables. SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-dimensional data are underused. By elucidating the association of morphologic features with clinical variables and molecular genetics, this study highlights the vast potential of convolutional neural networks in understanding MDS pathology and how genetics is reflected in BM morphology.See related commentary by Elemento, p. 195." @default.
- W3136768428 created "2021-03-29" @default.
- W3136768428 creator A5001854188 @default.
- W3136768428 creator A5008868111 @default.
- W3136768428 creator A5009137826 @default.
- W3136768428 creator A5016681267 @default.
- W3136768428 creator A5016971960 @default.
- W3136768428 creator A5023554856 @default.
- W3136768428 creator A5039929722 @default.
- W3136768428 creator A5044791514 @default.
- W3136768428 creator A5050873337 @default.
- W3136768428 creator A5069960777 @default.
- W3136768428 creator A5070170202 @default.
- W3136768428 date "2021-03-22" @default.
- W3136768428 modified "2023-10-06" @default.
- W3136768428 title "Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS" @default.
- W3136768428 cites W1631320694 @default.
- W3136768428 cites W1973157096 @default.
- W3136768428 cites W1986987869 @default.
- W3136768428 cites W1993236149 @default.
- W3136768428 cites W2026134786 @default.
- W3136768428 cites W2074606442 @default.
- W3136768428 cites W2086756578 @default.
- W3136768428 cites W2195128871 @default.
- W3136768428 cites W2253429366 @default.
- W3136768428 cites W2326726820 @default.
- W3136768428 cites W2339658711 @default.
- W3136768428 cites W2578635365 @default.
- W3136768428 cites W2581082771 @default.
- W3136768428 cites W2601810315 @default.
- W3136768428 cites W2760946358 @default.
- W3136768428 cites W2765897706 @default.
- W3136768428 cites W2772063923 @default.
- W3136768428 cites W2794803511 @default.
- W3136768428 cites W2885688423 @default.
- W3136768428 cites W2914501786 @default.
- W3136768428 cites W2919115771 @default.
- W3136768428 cites W2948930564 @default.
- W3136768428 cites W2951799803 @default.
- W3136768428 cites W2952481429 @default.
- W3136768428 cites W2956228567 @default.
- W3136768428 cites W2999399991 @default.
- W3136768428 cites W3043835773 @default.
- W3136768428 cites W3044996171 @default.
- W3136768428 cites W3089299415 @default.
- W3136768428 cites W4231930751 @default.
- W3136768428 cites W4294141750 @default.
- W3136768428 doi "https://doi.org/10.1158/2643-3230.bcd-20-0162" @default.
- W3136768428 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8513905" @default.
- W3136768428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35015673" @default.
- W3136768428 hasPublicationYear "2021" @default.
- W3136768428 type Work @default.
- W3136768428 sameAs 3136768428 @default.
- W3136768428 citedByCount "23" @default.
- W3136768428 countsByYear W31367684282021 @default.
- W3136768428 countsByYear W31367684282022 @default.
- W3136768428 countsByYear W31367684282023 @default.
- W3136768428 crossrefType "journal-article" @default.
- W3136768428 hasAuthorship W3136768428A5001854188 @default.
- W3136768428 hasAuthorship W3136768428A5008868111 @default.
- W3136768428 hasAuthorship W3136768428A5009137826 @default.
- W3136768428 hasAuthorship W3136768428A5016681267 @default.
- W3136768428 hasAuthorship W3136768428A5016971960 @default.
- W3136768428 hasAuthorship W3136768428A5023554856 @default.
- W3136768428 hasAuthorship W3136768428A5039929722 @default.
- W3136768428 hasAuthorship W3136768428A5044791514 @default.
- W3136768428 hasAuthorship W3136768428A5050873337 @default.
- W3136768428 hasAuthorship W3136768428A5069960777 @default.
- W3136768428 hasAuthorship W3136768428A5070170202 @default.
- W3136768428 hasBestOaLocation W31367684281 @default.
- W3136768428 hasConcept C142724271 @default.
- W3136768428 hasConcept C2780007613 @default.
- W3136768428 hasConcept C54355233 @default.
- W3136768428 hasConcept C544855455 @default.
- W3136768428 hasConcept C71924100 @default.
- W3136768428 hasConcept C86803240 @default.
- W3136768428 hasConceptScore W3136768428C142724271 @default.
- W3136768428 hasConceptScore W3136768428C2780007613 @default.
- W3136768428 hasConceptScore W3136768428C54355233 @default.
- W3136768428 hasConceptScore W3136768428C544855455 @default.
- W3136768428 hasConceptScore W3136768428C71924100 @default.
- W3136768428 hasConceptScore W3136768428C86803240 @default.
- W3136768428 hasFunder F4320310086 @default.
- W3136768428 hasFunder F4320311816 @default.
- W3136768428 hasFunder F4320322135 @default.
- W3136768428 hasFunder F4320322550 @default.
- W3136768428 hasFunder F4320323760 @default.
- W3136768428 hasFunder F4320333873 @default.
- W3136768428 hasIssue "3" @default.
- W3136768428 hasLocation W31367684281 @default.
- W3136768428 hasLocation W31367684282 @default.
- W3136768428 hasLocation W31367684283 @default.
- W3136768428 hasLocation W31367684284 @default.
- W3136768428 hasLocation W31367684285 @default.
- W3136768428 hasOpenAccess W3136768428 @default.
- W3136768428 hasPrimaryLocation W31367684281 @default.
- W3136768428 hasRelatedWork W1728332899 @default.
- W3136768428 hasRelatedWork W1991523530 @default.