Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136844903> ?p ?o ?g. }
- W3136844903 endingPage "103628" @default.
- W3136844903 startingPage "103628" @default.
- W3136844903 abstract "The electrocoalescence of an aqueous droplet at the oil-water interface in the presence of externally direct current electric fields was numerically analyzed with the finite element method by solving the Navier-Stokes and charge conservation equations. The proprietary software Comsol Multiphysics was used for this purpose, and the interface motion was captured by the Level-Set method. Good agreement was obtained between numerical and experimental results in the literature. The numerical description of droplet-interface coalescence transition from the viewpoint of flow field evolution and bridge dynamics was systematically examined, analyzed, and discussed. In the early droplet-interface merging process of CC (complete coalescence) modes, the droplet vortex pair was more strongly developed than the interface vortex pair, which gave rise to the enlargement of the droplet-interface liquid bridge and the fluid motion from the droplet to the interface. The interfacial velocity at the liquid bridge was much larger than at the other regions of the droplet surface in the upheaval CC mode. The upward velocity of the outflow-natured outer vortex pair was observed in the PC (partial coalescence) mode, leading to the formation of secondary droplets. In the jet-like PC mode, multiple outflow-natured vortex pairs simultaneously existed, forcing the droplet tail to break up into tiny satellite droplets. In the NC (non-coalescence) mode, the outflow-natured outer vortex pair was always directed upward, and with the breakup of bouncing-off droplets in the NC mode, an abnormal flow field with an irregular outflow-natured outer vortex pair was formed. Conductivity played little or no part in determining the CC-PC transition, but influenced the PC-NC transition. With the whole liquid bridge dynamics involving liquid bridge growth and decay dynamics taken into consideration, a good quartic polynomial function trend was obtained between the non-dimensional liquid bridge width W* and the non-dimensional time t*. In addition, the liquid decay dynamics and the coupling effect of the electric field and fluid physical properties (such as interfacial tension and viscosity) determine the partial coalescence process. The outcome of this work is potentially useful for optimizing the design of compact and efficient oil-water separators." @default.
- W3136844903 created "2021-03-29" @default.
- W3136844903 creator A5012134796 @default.
- W3136844903 creator A5023674368 @default.
- W3136844903 creator A5036837044 @default.
- W3136844903 creator A5041295799 @default.
- W3136844903 creator A5045247393 @default.
- W3136844903 creator A5074843536 @default.
- W3136844903 creator A5084524372 @default.
- W3136844903 creator A5088844646 @default.
- W3136844903 creator A5089374633 @default.
- W3136844903 date "2021-06-01" @default.
- W3136844903 modified "2023-10-12" @default.
- W3136844903 title "Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field" @default.
- W3136844903 cites W1586195103 @default.
- W3136844903 cites W1975683567 @default.
- W3136844903 cites W1985220688 @default.
- W3136844903 cites W1991447794 @default.
- W3136844903 cites W1994995219 @default.
- W3136844903 cites W2008598358 @default.
- W3136844903 cites W2012994243 @default.
- W3136844903 cites W2019352951 @default.
- W3136844903 cites W2054935772 @default.
- W3136844903 cites W2065291747 @default.
- W3136844903 cites W2080406486 @default.
- W3136844903 cites W2081775511 @default.
- W3136844903 cites W2102089106 @default.
- W3136844903 cites W2109076537 @default.
- W3136844903 cites W2116723694 @default.
- W3136844903 cites W2129648138 @default.
- W3136844903 cites W2153737576 @default.
- W3136844903 cites W2154443020 @default.
- W3136844903 cites W2169445164 @default.
- W3136844903 cites W2315417038 @default.
- W3136844903 cites W2333623215 @default.
- W3136844903 cites W2506126132 @default.
- W3136844903 cites W2513690681 @default.
- W3136844903 cites W2593174597 @default.
- W3136844903 cites W2604779414 @default.
- W3136844903 cites W2757113320 @default.
- W3136844903 cites W2803446818 @default.
- W3136844903 cites W2810778875 @default.
- W3136844903 cites W2874347694 @default.
- W3136844903 cites W2897470737 @default.
- W3136844903 cites W2897898309 @default.
- W3136844903 cites W2901722833 @default.
- W3136844903 cites W2903341661 @default.
- W3136844903 cites W2939056093 @default.
- W3136844903 cites W2939311996 @default.
- W3136844903 cites W2955089198 @default.
- W3136844903 cites W2972643373 @default.
- W3136844903 cites W2974887038 @default.
- W3136844903 cites W2978912361 @default.
- W3136844903 cites W2979898998 @default.
- W3136844903 cites W2980078725 @default.
- W3136844903 cites W2989806441 @default.
- W3136844903 cites W2996829985 @default.
- W3136844903 cites W2999200575 @default.
- W3136844903 cites W3001075912 @default.
- W3136844903 cites W3012306417 @default.
- W3136844903 cites W3017009397 @default.
- W3136844903 cites W3047477953 @default.
- W3136844903 cites W3089681164 @default.
- W3136844903 cites W3092320592 @default.
- W3136844903 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2021.103628" @default.
- W3136844903 hasPublicationYear "2021" @default.
- W3136844903 type Work @default.
- W3136844903 sameAs 3136844903 @default.
- W3136844903 citedByCount "11" @default.
- W3136844903 countsByYear W31368449032021 @default.
- W3136844903 countsByYear W31368449032022 @default.
- W3136844903 countsByYear W31368449032023 @default.
- W3136844903 crossrefType "journal-article" @default.
- W3136844903 hasAuthorship W3136844903A5012134796 @default.
- W3136844903 hasAuthorship W3136844903A5023674368 @default.
- W3136844903 hasAuthorship W3136844903A5036837044 @default.
- W3136844903 hasAuthorship W3136844903A5041295799 @default.
- W3136844903 hasAuthorship W3136844903A5045247393 @default.
- W3136844903 hasAuthorship W3136844903A5074843536 @default.
- W3136844903 hasAuthorship W3136844903A5084524372 @default.
- W3136844903 hasAuthorship W3136844903A5088844646 @default.
- W3136844903 hasAuthorship W3136844903A5089374633 @default.
- W3136844903 hasConcept C121332964 @default.
- W3136844903 hasConcept C135628077 @default.
- W3136844903 hasConcept C140820882 @default.
- W3136844903 hasConcept C149792144 @default.
- W3136844903 hasConcept C153294291 @default.
- W3136844903 hasConcept C159275676 @default.
- W3136844903 hasConcept C182748727 @default.
- W3136844903 hasConcept C192562407 @default.
- W3136844903 hasConcept C196558001 @default.
- W3136844903 hasConcept C2777871205 @default.
- W3136844903 hasConcept C46435376 @default.
- W3136844903 hasConcept C57879066 @default.
- W3136844903 hasConcept C60799052 @default.
- W3136844903 hasConcept C62520636 @default.
- W3136844903 hasConcept C74650414 @default.
- W3136844903 hasConcept C86132830 @default.