Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136877424> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3136877424 abstract "Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes’ rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein—von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant “T9” used the DKF to type out messages on a tablet PC. Nonstationarities, or changes to the statistical relationship between states and measurements that occur after model training, pose a significant challenge to effective filtering. In brain-computer interfaces, one common type of nonstationarity results from wonkiness or dropout of a single neuron. We show how a robust measurement model can be used within the DKF framework to effectively ignore large changes in the behavior of a single neuron. At BrainGate2, a successful online human neural decoding experiment validated this approach against the commonly-used Kalman filter." @default.
- W3136877424 created "2021-03-29" @default.
- W3136877424 creator A5005277906 @default.
- W3136877424 date "2020-02-25" @default.
- W3136877424 modified "2023-09-24" @default.
- W3136877424 title "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding" @default.
- W3136877424 doi "https://doi.org/10.31237/osf.io/4j3fu" @default.
- W3136877424 hasPublicationYear "2020" @default.
- W3136877424 type Work @default.
- W3136877424 sameAs 3136877424 @default.
- W3136877424 citedByCount "3" @default.
- W3136877424 countsByYear W31368774242021 @default.
- W3136877424 countsByYear W31368774242022 @default.
- W3136877424 crossrefType "posted-content" @default.
- W3136877424 hasAuthorship W3136877424A5005277906 @default.
- W3136877424 hasBestOaLocation W31368774242 @default.
- W3136877424 hasConcept C106131492 @default.
- W3136877424 hasConcept C107673813 @default.
- W3136877424 hasConcept C11413529 @default.
- W3136877424 hasConcept C121332964 @default.
- W3136877424 hasConcept C154945302 @default.
- W3136877424 hasConcept C157286648 @default.
- W3136877424 hasConcept C163716315 @default.
- W3136877424 hasConcept C207201462 @default.
- W3136877424 hasConcept C31972630 @default.
- W3136877424 hasConcept C41008148 @default.
- W3136877424 hasConcept C57273362 @default.
- W3136877424 hasConcept C57830394 @default.
- W3136877424 hasConcept C62520636 @default.
- W3136877424 hasConcept C97931131 @default.
- W3136877424 hasConceptScore W3136877424C106131492 @default.
- W3136877424 hasConceptScore W3136877424C107673813 @default.
- W3136877424 hasConceptScore W3136877424C11413529 @default.
- W3136877424 hasConceptScore W3136877424C121332964 @default.
- W3136877424 hasConceptScore W3136877424C154945302 @default.
- W3136877424 hasConceptScore W3136877424C157286648 @default.
- W3136877424 hasConceptScore W3136877424C163716315 @default.
- W3136877424 hasConceptScore W3136877424C207201462 @default.
- W3136877424 hasConceptScore W3136877424C31972630 @default.
- W3136877424 hasConceptScore W3136877424C41008148 @default.
- W3136877424 hasConceptScore W3136877424C57273362 @default.
- W3136877424 hasConceptScore W3136877424C57830394 @default.
- W3136877424 hasConceptScore W3136877424C62520636 @default.
- W3136877424 hasConceptScore W3136877424C97931131 @default.
- W3136877424 hasLocation W31368774241 @default.
- W3136877424 hasLocation W31368774242 @default.
- W3136877424 hasLocation W31368774243 @default.
- W3136877424 hasLocation W31368774244 @default.
- W3136877424 hasLocation W31368774245 @default.
- W3136877424 hasLocation W31368774246 @default.
- W3136877424 hasLocation W31368774247 @default.
- W3136877424 hasLocation W31368774248 @default.
- W3136877424 hasOpenAccess W3136877424 @default.
- W3136877424 hasPrimaryLocation W31368774241 @default.
- W3136877424 hasRelatedWork W1574663009 @default.
- W3136877424 hasRelatedWork W2039802740 @default.
- W3136877424 hasRelatedWork W2139779561 @default.
- W3136877424 hasRelatedWork W2152007080 @default.
- W3136877424 hasRelatedWork W2956974768 @default.
- W3136877424 hasRelatedWork W3135795035 @default.
- W3136877424 hasRelatedWork W3217244082 @default.
- W3136877424 hasRelatedWork W165460659 @default.
- W3136877424 hasRelatedWork W2073139667 @default.
- W3136877424 hasRelatedWork W2398866605 @default.
- W3136877424 isParatext "false" @default.
- W3136877424 isRetracted "false" @default.
- W3136877424 magId "3136877424" @default.
- W3136877424 workType "article" @default.