Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136908367> ?p ?o ?g. }
- W3136908367 endingPage "107252" @default.
- W3136908367 startingPage "107252" @default.
- W3136908367 abstract "This study investigates a practical heterogeneous vehicle routing problem that involves routing a predefined fleet with different vehicle capacities to serve a series of customers to minimize the maximum routing time of vehicles. The comprehensive utilization of different types of vehicles brings great challenges for problem modeling and solving. In this study, a mixed-integer linear programming (MILP) model is formulated to obtain optimal solutions for small-scale problems. To further improve the quality of solutions for large-scale problems, this study develops a reinforcement learning-based hyper-heuristic, which introduces several meta-heuristics with different characteristics as low-level heuristics and policy-based reinforcement learning as a high-level selection strategy. Moreover, deep learning is used to extract hidden patterns within the collected data to combine the advantages of low-level heuristics better. Numerical experiments have been conducted and results indicate that the proposed algorithm exceeds the MILP solution on large-scale problems and outperforms the existing meta-heuristic algorithms." @default.
- W3136908367 created "2021-03-29" @default.
- W3136908367 creator A5008471674 @default.
- W3136908367 creator A5012212530 @default.
- W3136908367 creator A5054830882 @default.
- W3136908367 creator A5057744294 @default.
- W3136908367 date "2021-06-01" @default.
- W3136908367 modified "2023-10-11" @default.
- W3136908367 title "A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem" @default.
- W3136908367 cites W1694045780 @default.
- W3136908367 cites W1877228522 @default.
- W3136908367 cites W2010659373 @default.
- W3136908367 cites W2028630422 @default.
- W3136908367 cites W2045858576 @default.
- W3136908367 cites W2063520056 @default.
- W3136908367 cites W2068424856 @default.
- W3136908367 cites W2073484581 @default.
- W3136908367 cites W2075239114 @default.
- W3136908367 cites W2099672060 @default.
- W3136908367 cites W2111388156 @default.
- W3136908367 cites W2111563176 @default.
- W3136908367 cites W2117466569 @default.
- W3136908367 cites W2145814182 @default.
- W3136908367 cites W2168210873 @default.
- W3136908367 cites W2184602973 @default.
- W3136908367 cites W2257979135 @default.
- W3136908367 cites W2262276395 @default.
- W3136908367 cites W2284822720 @default.
- W3136908367 cites W2325312983 @default.
- W3136908367 cites W2346894567 @default.
- W3136908367 cites W2562801040 @default.
- W3136908367 cites W2577474183 @default.
- W3136908367 cites W2604280268 @default.
- W3136908367 cites W2617983775 @default.
- W3136908367 cites W2734900333 @default.
- W3136908367 cites W2766447205 @default.
- W3136908367 cites W2781324069 @default.
- W3136908367 cites W2783585128 @default.
- W3136908367 cites W2793379722 @default.
- W3136908367 cites W2796733585 @default.
- W3136908367 cites W2885136311 @default.
- W3136908367 cites W2891202634 @default.
- W3136908367 cites W2895954417 @default.
- W3136908367 cites W2896302100 @default.
- W3136908367 cites W2923748774 @default.
- W3136908367 cites W2938157874 @default.
- W3136908367 cites W2945320416 @default.
- W3136908367 cites W2950426842 @default.
- W3136908367 cites W2963986315 @default.
- W3136908367 cites W2973371563 @default.
- W3136908367 cites W3004157915 @default.
- W3136908367 cites W3028110392 @default.
- W3136908367 cites W4211122022 @default.
- W3136908367 doi "https://doi.org/10.1016/j.cie.2021.107252" @default.
- W3136908367 hasPublicationYear "2021" @default.
- W3136908367 type Work @default.
- W3136908367 sameAs 3136908367 @default.
- W3136908367 citedByCount "35" @default.
- W3136908367 countsByYear W31369083672021 @default.
- W3136908367 countsByYear W31369083672022 @default.
- W3136908367 countsByYear W31369083672023 @default.
- W3136908367 crossrefType "journal-article" @default.
- W3136908367 hasAuthorship W3136908367A5008471674 @default.
- W3136908367 hasAuthorship W3136908367A5012212530 @default.
- W3136908367 hasAuthorship W3136908367A5054830882 @default.
- W3136908367 hasAuthorship W3136908367A5057744294 @default.
- W3136908367 hasConcept C11413529 @default.
- W3136908367 hasConcept C117270229 @default.
- W3136908367 hasConcept C121332964 @default.
- W3136908367 hasConcept C123784306 @default.
- W3136908367 hasConcept C126255220 @default.
- W3136908367 hasConcept C127705205 @default.
- W3136908367 hasConcept C154945302 @default.
- W3136908367 hasConcept C173801870 @default.
- W3136908367 hasConcept C188888258 @default.
- W3136908367 hasConcept C19966478 @default.
- W3136908367 hasConcept C2778755073 @default.
- W3136908367 hasConcept C31258907 @default.
- W3136908367 hasConcept C33923547 @default.
- W3136908367 hasConcept C41008148 @default.
- W3136908367 hasConcept C56086750 @default.
- W3136908367 hasConcept C62520636 @default.
- W3136908367 hasConcept C74172769 @default.
- W3136908367 hasConcept C90509273 @default.
- W3136908367 hasConcept C97541855 @default.
- W3136908367 hasConceptScore W3136908367C11413529 @default.
- W3136908367 hasConceptScore W3136908367C117270229 @default.
- W3136908367 hasConceptScore W3136908367C121332964 @default.
- W3136908367 hasConceptScore W3136908367C123784306 @default.
- W3136908367 hasConceptScore W3136908367C126255220 @default.
- W3136908367 hasConceptScore W3136908367C127705205 @default.
- W3136908367 hasConceptScore W3136908367C154945302 @default.
- W3136908367 hasConceptScore W3136908367C173801870 @default.
- W3136908367 hasConceptScore W3136908367C188888258 @default.
- W3136908367 hasConceptScore W3136908367C19966478 @default.
- W3136908367 hasConceptScore W3136908367C2778755073 @default.
- W3136908367 hasConceptScore W3136908367C31258907 @default.
- W3136908367 hasConceptScore W3136908367C33923547 @default.