Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136927145> ?p ?o ?g. }
- W3136927145 endingPage "106951" @default.
- W3136927145 startingPage "106951" @default.
- W3136927145 abstract "Information granules have been considered as the fundamental constructs of Granular Computing. As a useful unsupervised learning technique, Fuzzy C-Means (FCM) is one of the most frequently used methods to construct information granules. The FCM-based granulation–degranulation mechanism plays a pivotal role in Granular Computing. In this paper, to enhance the quality of the degranulation (reconstruction) process, we augment the FCM-based degranulation mechanism by introducing a vector of fuzzification factors (fuzzification factor vector) and setting up an adjustment mechanism to modify the prototypes and the partition matrix. The design is regarded as an optimization problem, which is guided by a reconstruction criterion. In the proposed scheme, the initial partition matrix and prototypes are generated by the FCM. Then a fuzzification factor vector is introduced to form an appropriate fuzzification factor for each cluster to build up an adjustment scheme of modifying the prototypes and the partition matrix. With the supervised learning mode of the granulation–degranulation process, we construct a composite objective function of the fuzzification factor vector, the prototypes and the partition matrix. Subsequently, the particle swarm optimization is employed to optimize the fuzzification factor vector to refine the prototypes and develop the optimal partition matrix. Finally, the reconstruction performance of the FCM algorithm is enhanced. Overall, we show that the enhanced version of the degranulation process is beneficial to reduce the deterioration of the reconstruction results and improve the performance of the mechanism of granulation–degranulation, which is also meaningful for transforming data between numeric form and granular format. We offer a thorough analysis of the developed scheme. In particular, we show that the classical FCM algorithm forms a special case of the proposed scheme. Experiments completed for both synthetic and publicly available datasets demonstrate that the proposed approach outperforms the generic data reconstruction approach." @default.
- W3136927145 created "2021-03-29" @default.
- W3136927145 creator A5003799782 @default.
- W3136927145 creator A5026069411 @default.
- W3136927145 creator A5087555515 @default.
- W3136927145 date "2021-06-01" @default.
- W3136927145 modified "2023-09-27" @default.
- W3136927145 title "Augmentation of the reconstruction performance of Fuzzy C-Means with an optimized fuzzification factor vector" @default.
- W3136927145 cites W1575538451 @default.
- W3136927145 cites W1979637725 @default.
- W3136927145 cites W1985702987 @default.
- W3136927145 cites W1990352893 @default.
- W3136927145 cites W1995211832 @default.
- W3136927145 cites W2009891640 @default.
- W3136927145 cites W2070865291 @default.
- W3136927145 cites W2090571851 @default.
- W3136927145 cites W2095679991 @default.
- W3136927145 cites W2156145910 @default.
- W3136927145 cites W2258817502 @default.
- W3136927145 cites W2356195073 @default.
- W3136927145 cites W2477929851 @default.
- W3136927145 cites W2503957022 @default.
- W3136927145 cites W2558987374 @default.
- W3136927145 cites W2567139121 @default.
- W3136927145 cites W2568645856 @default.
- W3136927145 cites W2590392954 @default.
- W3136927145 cites W2676890506 @default.
- W3136927145 cites W2750557327 @default.
- W3136927145 cites W2772477243 @default.
- W3136927145 cites W2792866162 @default.
- W3136927145 cites W2795774084 @default.
- W3136927145 cites W2804193236 @default.
- W3136927145 cites W2884527549 @default.
- W3136927145 cites W2888374190 @default.
- W3136927145 cites W2906135914 @default.
- W3136927145 cites W2910328857 @default.
- W3136927145 cites W2913064120 @default.
- W3136927145 cites W2937299417 @default.
- W3136927145 cites W2997199851 @default.
- W3136927145 cites W2997585558 @default.
- W3136927145 cites W587258923 @default.
- W3136927145 doi "https://doi.org/10.1016/j.knosys.2021.106951" @default.
- W3136927145 hasPublicationYear "2021" @default.
- W3136927145 type Work @default.
- W3136927145 sameAs 3136927145 @default.
- W3136927145 citedByCount "2" @default.
- W3136927145 countsByYear W31369271452021 @default.
- W3136927145 countsByYear W31369271452022 @default.
- W3136927145 crossrefType "journal-article" @default.
- W3136927145 hasAuthorship W3136927145A5003799782 @default.
- W3136927145 hasAuthorship W3136927145A5026069411 @default.
- W3136927145 hasAuthorship W3136927145A5087555515 @default.
- W3136927145 hasBestOaLocation W31369271452 @default.
- W3136927145 hasConcept C111012933 @default.
- W3136927145 hasConcept C11413529 @default.
- W3136927145 hasConcept C114614502 @default.
- W3136927145 hasConcept C124101348 @default.
- W3136927145 hasConcept C126255220 @default.
- W3136927145 hasConcept C153180895 @default.
- W3136927145 hasConcept C154945302 @default.
- W3136927145 hasConcept C170493617 @default.
- W3136927145 hasConcept C17209119 @default.
- W3136927145 hasConcept C185592680 @default.
- W3136927145 hasConcept C33923547 @default.
- W3136927145 hasConcept C41008148 @default.
- W3136927145 hasConcept C42011625 @default.
- W3136927145 hasConcept C42812 @default.
- W3136927145 hasConcept C49802076 @default.
- W3136927145 hasConcept C55493867 @default.
- W3136927145 hasConcept C58166 @default.
- W3136927145 hasConcept C85617194 @default.
- W3136927145 hasConceptScore W3136927145C111012933 @default.
- W3136927145 hasConceptScore W3136927145C11413529 @default.
- W3136927145 hasConceptScore W3136927145C114614502 @default.
- W3136927145 hasConceptScore W3136927145C124101348 @default.
- W3136927145 hasConceptScore W3136927145C126255220 @default.
- W3136927145 hasConceptScore W3136927145C153180895 @default.
- W3136927145 hasConceptScore W3136927145C154945302 @default.
- W3136927145 hasConceptScore W3136927145C170493617 @default.
- W3136927145 hasConceptScore W3136927145C17209119 @default.
- W3136927145 hasConceptScore W3136927145C185592680 @default.
- W3136927145 hasConceptScore W3136927145C33923547 @default.
- W3136927145 hasConceptScore W3136927145C41008148 @default.
- W3136927145 hasConceptScore W3136927145C42011625 @default.
- W3136927145 hasConceptScore W3136927145C42812 @default.
- W3136927145 hasConceptScore W3136927145C49802076 @default.
- W3136927145 hasConceptScore W3136927145C55493867 @default.
- W3136927145 hasConceptScore W3136927145C58166 @default.
- W3136927145 hasConceptScore W3136927145C85617194 @default.
- W3136927145 hasLocation W31369271451 @default.
- W3136927145 hasLocation W31369271452 @default.
- W3136927145 hasOpenAccess W3136927145 @default.
- W3136927145 hasPrimaryLocation W31369271451 @default.
- W3136927145 hasRelatedWork W1123195735 @default.
- W3136927145 hasRelatedWork W1660791202 @default.
- W3136927145 hasRelatedWork W2012453515 @default.
- W3136927145 hasRelatedWork W2112992691 @default.
- W3136927145 hasRelatedWork W2156098175 @default.