Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136937145> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3136937145 abstract "Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network (GAN) model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Large-scale experiments on The Cancer Genome Atlas (TCGA) breast cancer, lung cancer, and ovarian cancer datasets validate that (1) the model can effectively integrate two omics data (e.g., mRNA and microRNA expression data) and their interaction network (e.g., microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (2) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals." @default.
- W3136937145 created "2021-03-29" @default.
- W3136937145 creator A5010172507 @default.
- W3136937145 creator A5025261152 @default.
- W3136937145 creator A5074491379 @default.
- W3136937145 creator A5079380128 @default.
- W3136937145 date "2021-03-16" @default.
- W3136937145 modified "2023-10-16" @default.
- W3136937145 title "Multi-omics Data Integration by Generative Adversarial Network" @default.
- W3136937145 cites W1987219048 @default.
- W3136937145 cites W2009405916 @default.
- W3136937145 cites W2114843025 @default.
- W3136937145 cites W2134629862 @default.
- W3136937145 cites W2154149573 @default.
- W3136937145 cites W2175370850 @default.
- W3136937145 cites W2396849069 @default.
- W3136937145 cites W2612122212 @default.
- W3136937145 cites W2785329615 @default.
- W3136937145 cites W2794416695 @default.
- W3136937145 cites W2808845633 @default.
- W3136937145 cites W2809527755 @default.
- W3136937145 cites W2895736867 @default.
- W3136937145 cites W2899335103 @default.
- W3136937145 cites W2906107882 @default.
- W3136937145 cites W2910993836 @default.
- W3136937145 cites W2950878899 @default.
- W3136937145 cites W2955502047 @default.
- W3136937145 cites W2963767194 @default.
- W3136937145 cites W2964024144 @default.
- W3136937145 cites W3022075571 @default.
- W3136937145 cites W3028304854 @default.
- W3136937145 cites W3037216933 @default.
- W3136937145 cites W3044522460 @default.
- W3136937145 cites W3100015175 @default.
- W3136937145 doi "https://doi.org/10.1101/2021.03.13.435251" @default.
- W3136937145 hasPublicationYear "2021" @default.
- W3136937145 type Work @default.
- W3136937145 sameAs 3136937145 @default.
- W3136937145 citedByCount "1" @default.
- W3136937145 countsByYear W31369371452023 @default.
- W3136937145 crossrefType "posted-content" @default.
- W3136937145 hasAuthorship W3136937145A5010172507 @default.
- W3136937145 hasAuthorship W3136937145A5025261152 @default.
- W3136937145 hasAuthorship W3136937145A5074491379 @default.
- W3136937145 hasAuthorship W3136937145A5079380128 @default.
- W3136937145 hasBestOaLocation W31369371451 @default.
- W3136937145 hasConcept C104317684 @default.
- W3136937145 hasConcept C119857082 @default.
- W3136937145 hasConcept C124101348 @default.
- W3136937145 hasConcept C157585117 @default.
- W3136937145 hasConcept C41008148 @default.
- W3136937145 hasConcept C55105296 @default.
- W3136937145 hasConcept C55493867 @default.
- W3136937145 hasConcept C60644358 @default.
- W3136937145 hasConcept C70721500 @default.
- W3136937145 hasConcept C72634772 @default.
- W3136937145 hasConcept C86803240 @default.
- W3136937145 hasConceptScore W3136937145C104317684 @default.
- W3136937145 hasConceptScore W3136937145C119857082 @default.
- W3136937145 hasConceptScore W3136937145C124101348 @default.
- W3136937145 hasConceptScore W3136937145C157585117 @default.
- W3136937145 hasConceptScore W3136937145C41008148 @default.
- W3136937145 hasConceptScore W3136937145C55105296 @default.
- W3136937145 hasConceptScore W3136937145C55493867 @default.
- W3136937145 hasConceptScore W3136937145C60644358 @default.
- W3136937145 hasConceptScore W3136937145C70721500 @default.
- W3136937145 hasConceptScore W3136937145C72634772 @default.
- W3136937145 hasConceptScore W3136937145C86803240 @default.
- W3136937145 hasLocation W31369371451 @default.
- W3136937145 hasOpenAccess W3136937145 @default.
- W3136937145 hasPrimaryLocation W31369371451 @default.
- W3136937145 hasRelatedWork W2104887694 @default.
- W3136937145 hasRelatedWork W2365284653 @default.
- W3136937145 hasRelatedWork W2789904032 @default.
- W3136937145 hasRelatedWork W2899158256 @default.
- W3136937145 hasRelatedWork W2924026001 @default.
- W3136937145 hasRelatedWork W2998655779 @default.
- W3136937145 hasRelatedWork W3180782360 @default.
- W3136937145 hasRelatedWork W4206956476 @default.
- W3136937145 hasRelatedWork W4280593167 @default.
- W3136937145 hasRelatedWork W4317821186 @default.
- W3136937145 isParatext "false" @default.
- W3136937145 isRetracted "false" @default.
- W3136937145 magId "3136937145" @default.
- W3136937145 workType "article" @default.