Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136961553> ?p ?o ?g. }
- W3136961553 endingPage "1816" @default.
- W3136961553 startingPage "1805" @default.
- W3136961553 abstract "Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging modality that can reduce false negatives and false positives in mass lesion detection caused by overlapping breast tissue in conventional two-dimensional (2D) mammography. The patient dose of a DBT scan is similar to that of a single 2D mammogram, while acquisition of each projection view adds detector readout noise. The noise is propagated to the reconstructed DBT volume, possibly obscuring subtle signs of breast cancer such as microcalcifications (MCs). This study developed a deep convolutional neural network (DCNN) framework for denoising DBT images with a focus on improving the conspicuity of MCs as well as preserving the ill-defined margins of spiculated masses and normal tissue textures. We trained the DCNN using a weighted combination of mean squared error (MSE) loss and adversarial loss. We configured a dedicated x-ray imaging simulator in combination with digital breast phantoms to generate realistic in silico DBT data for training. We compared the DCNN training between using digital phantoms and using real physical phantoms. The proposed denoising method improved the contrast-to-noise ratio (CNR) and detectability index (d') of the simulated MCs in the validation phantom DBTs. These performance measures improved with increasing training target dose and training sample size. Promising denoising results were observed on the transferability of the digital-phantom-trained denoiser to DBT reconstructed with different techniques and on a small independent test set of human subject DBT images." @default.
- W3136961553 created "2021-03-29" @default.
- W3136961553 creator A5027207271 @default.
- W3136961553 creator A5027247097 @default.
- W3136961553 creator A5045866725 @default.
- W3136961553 date "2021-07-01" @default.
- W3136961553 modified "2023-10-04" @default.
- W3136961553 title "Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images" @default.
- W3136961553 cites W1581580147 @default.
- W3136961553 cites W1584349271 @default.
- W3136961553 cites W1885185971 @default.
- W3136961553 cites W1913193083 @default.
- W3136961553 cites W1963706991 @default.
- W3136961553 cites W1968983912 @default.
- W3136961553 cites W1973884420 @default.
- W3136961553 cites W2001134459 @default.
- W3136961553 cites W2005433352 @default.
- W3136961553 cites W2009600292 @default.
- W3136961553 cites W2014348181 @default.
- W3136961553 cites W2023616320 @default.
- W3136961553 cites W2023922170 @default.
- W3136961553 cites W2027162949 @default.
- W3136961553 cites W2034507244 @default.
- W3136961553 cites W2037468221 @default.
- W3136961553 cites W2045563668 @default.
- W3136961553 cites W2077646548 @default.
- W3136961553 cites W2099078477 @default.
- W3136961553 cites W2101891472 @default.
- W3136961553 cites W2111918949 @default.
- W3136961553 cites W2112195694 @default.
- W3136961553 cites W2136511638 @default.
- W3136961553 cites W2146986429 @default.
- W3136961553 cites W2158185791 @default.
- W3136961553 cites W2242218935 @default.
- W3136961553 cites W2280541663 @default.
- W3136961553 cites W2293943100 @default.
- W3136961553 cites W2323954087 @default.
- W3136961553 cites W2508457857 @default.
- W3136961553 cites W2569464120 @default.
- W3136961553 cites W2573726823 @default.
- W3136961553 cites W2617128058 @default.
- W3136961553 cites W2739612467 @default.
- W3136961553 cites W2743780012 @default.
- W3136961553 cites W2768814045 @default.
- W3136961553 cites W2778924750 @default.
- W3136961553 cites W2793212712 @default.
- W3136961553 cites W2883105305 @default.
- W3136961553 cites W2892235178 @default.
- W3136961553 cites W2902699143 @default.
- W3136961553 cites W2914498953 @default.
- W3136961553 cites W2963073614 @default.
- W3136961553 cites W2963470893 @default.
- W3136961553 cites W2963814976 @default.
- W3136961553 cites W3010741892 @default.
- W3136961553 cites W3026985640 @default.
- W3136961553 cites W3098281398 @default.
- W3136961553 cites W3103261259 @default.
- W3136961553 cites W4242059867 @default.
- W3136961553 doi "https://doi.org/10.1109/tmi.2021.3066896" @default.
- W3136961553 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8274391" @default.
- W3136961553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33729933" @default.
- W3136961553 hasPublicationYear "2021" @default.
- W3136961553 type Work @default.
- W3136961553 sameAs 3136961553 @default.
- W3136961553 citedByCount "15" @default.
- W3136961553 countsByYear W31369615532021 @default.
- W3136961553 countsByYear W31369615532022 @default.
- W3136961553 countsByYear W31369615532023 @default.
- W3136961553 crossrefType "journal-article" @default.
- W3136961553 hasAuthorship W3136961553A5027207271 @default.
- W3136961553 hasAuthorship W3136961553A5027247097 @default.
- W3136961553 hasAuthorship W3136961553A5045866725 @default.
- W3136961553 hasBestOaLocation W31369615532 @default.
- W3136961553 hasConcept C104293457 @default.
- W3136961553 hasConcept C108583219 @default.
- W3136961553 hasConcept C115961682 @default.
- W3136961553 hasConcept C121608353 @default.
- W3136961553 hasConcept C126322002 @default.
- W3136961553 hasConcept C147454874 @default.
- W3136961553 hasConcept C153180895 @default.
- W3136961553 hasConcept C154945302 @default.
- W3136961553 hasConcept C163294075 @default.
- W3136961553 hasConcept C2777432617 @default.
- W3136961553 hasConcept C2780472235 @default.
- W3136961553 hasConcept C2781281974 @default.
- W3136961553 hasConcept C2989005 @default.
- W3136961553 hasConcept C31972630 @default.
- W3136961553 hasConcept C41008148 @default.
- W3136961553 hasConcept C530470458 @default.
- W3136961553 hasConcept C64869954 @default.
- W3136961553 hasConcept C71924100 @default.
- W3136961553 hasConcept C81363708 @default.
- W3136961553 hasConcept C99498987 @default.
- W3136961553 hasConceptScore W3136961553C104293457 @default.
- W3136961553 hasConceptScore W3136961553C108583219 @default.
- W3136961553 hasConceptScore W3136961553C115961682 @default.
- W3136961553 hasConceptScore W3136961553C121608353 @default.
- W3136961553 hasConceptScore W3136961553C126322002 @default.