Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136991952> ?p ?o ?g. }
- W3136991952 endingPage "3356" @default.
- W3136991952 startingPage "3346" @default.
- W3136991952 abstract "This study presents a novel hybrid intelligent approach using Extreme Learning Machine (ELM) and Equilibrium Optimiser (EO) (ELM-EO) for predicting resilient modulus, Mr of Unbound Granular Materials (UGMs). Fourteen various blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM), and Electric Arc Furnace Steel (EAFS) slag with limestone aggregates were tested in the laboratory using routine and advanced tests. The laboratory Mr testing produced 224 measurements based on the average of triplicate samples for each blend. The performance of the ELM-EO approach was evaluated and compared with conventional regression, ELM-biogeography-based optimisation (BBO) (ELM-BBO) and ELM-genetic algorithm (ELM-GA) approaches using the same input properties. The inputs used for the Mr prediction are the bulk stress, percent of RCM, and/or percent of EAFS. The results demonstrate that the performance of ELM-EO and ELM-BBO approaches is better than ELM-GA and regression approaches for predicting Mr. The overall statistical measures of the proposed approaches show that the ELM-EO approach ranks first as it outperforms the other approaches with coefficient of determination (R2) of 0.924 and Root Mean Square Error (RMSE) of 37.08 MPa." @default.
- W3136991952 created "2021-03-29" @default.
- W3136991952 creator A5012115119 @default.
- W3136991952 creator A5024028693 @default.
- W3136991952 creator A5024238107 @default.
- W3136991952 creator A5034962025 @default.
- W3136991952 creator A5047994969 @default.
- W3136991952 creator A5050236258 @default.
- W3136991952 creator A5063113402 @default.
- W3136991952 creator A5081470939 @default.
- W3136991952 creator A5083620416 @default.
- W3136991952 date "2021-03-15" @default.
- W3136991952 modified "2023-10-02" @default.
- W3136991952 title "A novel approach for resilient modulus prediction using extreme learning machine-equilibrium optimiser techniques" @default.
- W3136991952 cites W1542574632 @default.
- W3136991952 cites W1878777247 @default.
- W3136991952 cites W1973823655 @default.
- W3136991952 cites W1980321538 @default.
- W3136991952 cites W1985068142 @default.
- W3136991952 cites W1985479415 @default.
- W3136991952 cites W1992169543 @default.
- W3136991952 cites W1994964303 @default.
- W3136991952 cites W2020198516 @default.
- W3136991952 cites W2026689942 @default.
- W3136991952 cites W2031468664 @default.
- W3136991952 cites W2036277535 @default.
- W3136991952 cites W2055060339 @default.
- W3136991952 cites W2066591488 @default.
- W3136991952 cites W2074040465 @default.
- W3136991952 cites W2101674911 @default.
- W3136991952 cites W2121971770 @default.
- W3136991952 cites W2129694088 @default.
- W3136991952 cites W2168081761 @default.
- W3136991952 cites W2169956782 @default.
- W3136991952 cites W2236499470 @default.
- W3136991952 cites W2289907427 @default.
- W3136991952 cites W2386192529 @default.
- W3136991952 cites W2476952809 @default.
- W3136991952 cites W2596943951 @default.
- W3136991952 cites W2743677931 @default.
- W3136991952 cites W2768318199 @default.
- W3136991952 cites W2769989837 @default.
- W3136991952 cites W2884366127 @default.
- W3136991952 cites W2901292014 @default.
- W3136991952 cites W2909188960 @default.
- W3136991952 cites W2921796625 @default.
- W3136991952 cites W2946753160 @default.
- W3136991952 cites W2947113275 @default.
- W3136991952 cites W2959337851 @default.
- W3136991952 cites W2964938317 @default.
- W3136991952 cites W2972062427 @default.
- W3136991952 cites W2985845430 @default.
- W3136991952 cites W2997440268 @default.
- W3136991952 cites W3009818760 @default.
- W3136991952 cites W3011529505 @default.
- W3136991952 cites W3016060324 @default.
- W3136991952 cites W3022913179 @default.
- W3136991952 cites W3035580378 @default.
- W3136991952 cites W3047251950 @default.
- W3136991952 cites W3137707646 @default.
- W3136991952 cites W332085899 @default.
- W3136991952 cites W4232345992 @default.
- W3136991952 doi "https://doi.org/10.1080/10298436.2021.1892109" @default.
- W3136991952 hasPublicationYear "2021" @default.
- W3136991952 type Work @default.
- W3136991952 sameAs 3136991952 @default.
- W3136991952 citedByCount "5" @default.
- W3136991952 countsByYear W31369919522022 @default.
- W3136991952 countsByYear W31369919522023 @default.
- W3136991952 crossrefType "journal-article" @default.
- W3136991952 hasAuthorship W3136991952A5012115119 @default.
- W3136991952 hasAuthorship W3136991952A5024028693 @default.
- W3136991952 hasAuthorship W3136991952A5024238107 @default.
- W3136991952 hasAuthorship W3136991952A5034962025 @default.
- W3136991952 hasAuthorship W3136991952A5047994969 @default.
- W3136991952 hasAuthorship W3136991952A5050236258 @default.
- W3136991952 hasAuthorship W3136991952A5063113402 @default.
- W3136991952 hasAuthorship W3136991952A5081470939 @default.
- W3136991952 hasAuthorship W3136991952A5083620416 @default.
- W3136991952 hasConcept C105795698 @default.
- W3136991952 hasConcept C11413529 @default.
- W3136991952 hasConcept C119857082 @default.
- W3136991952 hasConcept C139945424 @default.
- W3136991952 hasConcept C159985019 @default.
- W3136991952 hasConcept C186060115 @default.
- W3136991952 hasConcept C192562407 @default.
- W3136991952 hasConcept C2780150128 @default.
- W3136991952 hasConcept C33923547 @default.
- W3136991952 hasConcept C41008148 @default.
- W3136991952 hasConcept C4679612 @default.
- W3136991952 hasConcept C50644808 @default.
- W3136991952 hasConcept C86803240 @default.
- W3136991952 hasConceptScore W3136991952C105795698 @default.
- W3136991952 hasConceptScore W3136991952C11413529 @default.
- W3136991952 hasConceptScore W3136991952C119857082 @default.
- W3136991952 hasConceptScore W3136991952C139945424 @default.
- W3136991952 hasConceptScore W3136991952C159985019 @default.
- W3136991952 hasConceptScore W3136991952C186060115 @default.