Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136991990> ?p ?o ?g. }
- W3136991990 endingPage "158" @default.
- W3136991990 startingPage "146" @default.
- W3136991990 abstract "To identify stable and discriminating radiomic features on non-contrast CT scans to develop more generalisable radiomic classifiers for distinguishing granulomas from adenocarcinomas.In total, 412 patients with adenocarcinomas and granulomas from three institutions were retrospectively included. Segmentations of the lung nodules were performed manually by an expert radiologist in a 2D axial view. Radiomic features were extracted from intra- and perinodular regions. A total of 145 patients were used as part of the training set (Str), whereas 205 patients were used as part of test set I (Ste1) and 62 patients were used as part of independent test set II (Ste2). To mitigate the variation of CT acquisition parameters, we defined 'stable' radiomic features as those for which the feature expression remains relatively unchanged between different sites, as assessed using a Wilcoxon rank-sum test. These stable features were used to develop more generalisable radiomic classifiers that were more resilient to variations in lung CT scans. Features were ranked based on two criteria, firstly based on discriminability (i.e. maximising AUC) alone and subsequently based on maximising both feature stability and discriminability. Different machine-learning classifiers (Linear discriminant analysis, Quadratic discriminant analysis, Support vector machines and random forest) were trained with features selected using the two different criteria and then compared on the two independent test sets for distinguishing granulomas from adenocarcinomas, in terms of area under the receiver operating characteristic curve.In the test sets, classifiers constructed using the criteria involving maximising feature stability and discriminability simultaneously achieved higher AUC compared with the discriminating alone criteria (Ste1 [n = 205]: maximum AUCs of 0.85versus . 0.80; p-value = 0.047 and Ste2 [n = 62]: maximum AUCs of 0.87 versus. 0.79; p-value = 0.021). These differences held for features extracted from scans with <3 mm slice thickness (AUC = 0.88 versus. 0.80; p-value = 0.039, n = 100) and for the ≥3 mm cases (AUC = 0.81 versus. 0.76; p-value = 0.034, n = 105). In both experiments, shape and peritumoural texture features had a higher stability compared with intratumoural texture features.Our study suggests that explicitly accounting for both stability and discriminability results in more generalisable radiomic classifiers to distinguish adenocarcinomas from granulomas on non-contrast CT scans. Our results also showed that peritumoural texture and shape features were less affected by the scanner parameters compared with intratumoural texture features; however, they were also less discriminating compared with intratumoural features." @default.
- W3136991990 created "2021-03-29" @default.
- W3136991990 creator A5002170706 @default.
- W3136991990 creator A5022833468 @default.
- W3136991990 creator A5026698119 @default.
- W3136991990 creator A5027642699 @default.
- W3136991990 creator A5035645374 @default.
- W3136991990 creator A5047904907 @default.
- W3136991990 creator A5051186131 @default.
- W3136991990 creator A5059061070 @default.
- W3136991990 creator A5066861614 @default.
- W3136991990 creator A5088228366 @default.
- W3136991990 creator A5091618934 @default.
- W3136991990 creator A5091872663 @default.
- W3136991990 date "2021-05-01" @default.
- W3136991990 modified "2023-10-17" @default.
- W3136991990 title "Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non-contrast computed tomography scans" @default.
- W3136991990 cites W1987035613 @default.
- W3136991990 cites W1987054640 @default.
- W3136991990 cites W1990368410 @default.
- W3136991990 cites W1992101966 @default.
- W3136991990 cites W2008108075 @default.
- W3136991990 cites W2038894244 @default.
- W3136991990 cites W2052357865 @default.
- W3136991990 cites W2062744135 @default.
- W3136991990 cites W2082040344 @default.
- W3136991990 cites W2089588713 @default.
- W3136991990 cites W2099635275 @default.
- W3136991990 cites W2111389142 @default.
- W3136991990 cites W2119374153 @default.
- W3136991990 cites W2123568686 @default.
- W3136991990 cites W2134306559 @default.
- W3136991990 cites W2138368434 @default.
- W3136991990 cites W2142657594 @default.
- W3136991990 cites W2159375002 @default.
- W3136991990 cites W2161289668 @default.
- W3136991990 cites W2206271991 @default.
- W3136991990 cites W2398056625 @default.
- W3136991990 cites W2523312410 @default.
- W3136991990 cites W2530038065 @default.
- W3136991990 cites W2579949149 @default.
- W3136991990 cites W2596686700 @default.
- W3136991990 cites W2603308445 @default.
- W3136991990 cites W2774295816 @default.
- W3136991990 cites W2793531395 @default.
- W3136991990 cites W2800038717 @default.
- W3136991990 cites W2801894005 @default.
- W3136991990 cites W2802305998 @default.
- W3136991990 cites W2803449356 @default.
- W3136991990 cites W2895559788 @default.
- W3136991990 cites W2895880339 @default.
- W3136991990 cites W2904258904 @default.
- W3136991990 cites W2917810421 @default.
- W3136991990 cites W2924086752 @default.
- W3136991990 cites W2952406314 @default.
- W3136991990 cites W2953693252 @default.
- W3136991990 cites W2983255478 @default.
- W3136991990 cites W2983529249 @default.
- W3136991990 cites W3008157799 @default.
- W3136991990 cites W3012017133 @default.
- W3136991990 cites W3040240789 @default.
- W3136991990 cites W3092062217 @default.
- W3136991990 cites W3096789145 @default.
- W3136991990 doi "https://doi.org/10.1016/j.ejca.2021.02.008" @default.
- W3136991990 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8087632" @default.
- W3136991990 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33743483" @default.
- W3136991990 hasPublicationYear "2021" @default.
- W3136991990 type Work @default.
- W3136991990 sameAs 3136991990 @default.
- W3136991990 citedByCount "16" @default.
- W3136991990 countsByYear W31369919902021 @default.
- W3136991990 countsByYear W31369919902022 @default.
- W3136991990 countsByYear W31369919902023 @default.
- W3136991990 crossrefType "journal-article" @default.
- W3136991990 hasAuthorship W3136991990A5002170706 @default.
- W3136991990 hasAuthorship W3136991990A5022833468 @default.
- W3136991990 hasAuthorship W3136991990A5026698119 @default.
- W3136991990 hasAuthorship W3136991990A5027642699 @default.
- W3136991990 hasAuthorship W3136991990A5035645374 @default.
- W3136991990 hasAuthorship W3136991990A5047904907 @default.
- W3136991990 hasAuthorship W3136991990A5051186131 @default.
- W3136991990 hasAuthorship W3136991990A5059061070 @default.
- W3136991990 hasAuthorship W3136991990A5066861614 @default.
- W3136991990 hasAuthorship W3136991990A5088228366 @default.
- W3136991990 hasAuthorship W3136991990A5091618934 @default.
- W3136991990 hasAuthorship W3136991990A5091872663 @default.
- W3136991990 hasBestOaLocation W31369919902 @default.
- W3136991990 hasConcept C105795698 @default.
- W3136991990 hasConcept C112972136 @default.
- W3136991990 hasConcept C114614502 @default.
- W3136991990 hasConcept C119857082 @default.
- W3136991990 hasConcept C12267149 @default.
- W3136991990 hasConcept C126838900 @default.
- W3136991990 hasConcept C12868164 @default.
- W3136991990 hasConcept C138885662 @default.
- W3136991990 hasConcept C153180895 @default.
- W3136991990 hasConcept C154945302 @default.
- W3136991990 hasConcept C164226766 @default.