Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136993133> ?p ?o ?g. }
- W3136993133 endingPage "686" @default.
- W3136993133 startingPage "686" @default.
- W3136993133 abstract "Machine learning techniques have been used to develop many regression models to make predictions based on experience and historical data. They might be used singly or in ensembles. Single models are either classification or regression models that use one technique, while ensemble models combine various single models. To construct or find the best model is very complex and time-consuming, so this study develops a new platform, called intelligent Machine Learner (iML), to automatically build popular models and identify the best one. The iML platform is benchmarked with WEKA by analyzing publicly available datasets. After that, four industrial experiments are conducted to evaluate the performance of iML. In all cases, the best models determined by iML are superior to prior studies in terms of accuracy and computation time. Thus, the iML is a powerful and efficient tool for solving regression problems in engineering informatics." @default.
- W3136993133 created "2021-03-29" @default.
- W3136993133 creator A5024375461 @default.
- W3136993133 creator A5043651248 @default.
- W3136993133 creator A5045234607 @default.
- W3136993133 date "2021-03-23" @default.
- W3136993133 modified "2023-09-26" @default.
- W3136993133 title "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics" @default.
- W3136993133 cites W1414222439 @default.
- W3136993133 cites W1482021765 @default.
- W3136993133 cites W1967960963 @default.
- W3136993133 cites W1969885422 @default.
- W3136993133 cites W1990140423 @default.
- W3136993133 cites W2000424045 @default.
- W3136993133 cites W2002016471 @default.
- W3136993133 cites W2006398000 @default.
- W3136993133 cites W2011167731 @default.
- W3136993133 cites W2017004892 @default.
- W3136993133 cites W2017752979 @default.
- W3136993133 cites W2025040771 @default.
- W3136993133 cites W2028070629 @default.
- W3136993133 cites W2038808304 @default.
- W3136993133 cites W2043680591 @default.
- W3136993133 cites W2053834050 @default.
- W3136993133 cites W2066089962 @default.
- W3136993133 cites W2073399879 @default.
- W3136993133 cites W2080555645 @default.
- W3136993133 cites W2091606939 @default.
- W3136993133 cites W2093940093 @default.
- W3136993133 cites W2099534828 @default.
- W3136993133 cites W2101905272 @default.
- W3136993133 cites W2142827986 @default.
- W3136993133 cites W2149298154 @default.
- W3136993133 cites W2151554678 @default.
- W3136993133 cites W2309296013 @default.
- W3136993133 cites W2343337519 @default.
- W3136993133 cites W2346742891 @default.
- W3136993133 cites W2418032828 @default.
- W3136993133 cites W2519607311 @default.
- W3136993133 cites W2527460258 @default.
- W3136993133 cites W2550486166 @default.
- W3136993133 cites W2767695914 @default.
- W3136993133 cites W2779362453 @default.
- W3136993133 cites W2783794442 @default.
- W3136993133 cites W2789738719 @default.
- W3136993133 cites W2793257870 @default.
- W3136993133 cites W2793889610 @default.
- W3136993133 cites W2793918791 @default.
- W3136993133 cites W2803072311 @default.
- W3136993133 cites W2808550006 @default.
- W3136993133 cites W2809382919 @default.
- W3136993133 cites W2883038856 @default.
- W3136993133 cites W2884698751 @default.
- W3136993133 cites W2887575872 @default.
- W3136993133 cites W2889675347 @default.
- W3136993133 cites W2890760539 @default.
- W3136993133 cites W2895347830 @default.
- W3136993133 cites W2903950532 @default.
- W3136993133 cites W2904881001 @default.
- W3136993133 cites W2957374736 @default.
- W3136993133 cites W2963510972 @default.
- W3136993133 cites W2969384816 @default.
- W3136993133 cites W2977021709 @default.
- W3136993133 cites W2999411920 @default.
- W3136993133 cites W3011601991 @default.
- W3136993133 cites W3095834662 @default.
- W3136993133 cites W3130490277 @default.
- W3136993133 cites W4239510810 @default.
- W3136993133 cites W4297957988 @default.
- W3136993133 cites W942817259 @default.
- W3136993133 doi "https://doi.org/10.3390/math9060686" @default.
- W3136993133 hasPublicationYear "2021" @default.
- W3136993133 type Work @default.
- W3136993133 sameAs 3136993133 @default.
- W3136993133 citedByCount "7" @default.
- W3136993133 countsByYear W31369931332022 @default.
- W3136993133 countsByYear W31369931332023 @default.
- W3136993133 crossrefType "journal-article" @default.
- W3136993133 hasAuthorship W3136993133A5024375461 @default.
- W3136993133 hasAuthorship W3136993133A5043651248 @default.
- W3136993133 hasAuthorship W3136993133A5045234607 @default.
- W3136993133 hasBestOaLocation W31369931331 @default.
- W3136993133 hasConcept C105795698 @default.
- W3136993133 hasConcept C119599485 @default.
- W3136993133 hasConcept C119857082 @default.
- W3136993133 hasConcept C124101348 @default.
- W3136993133 hasConcept C127413603 @default.
- W3136993133 hasConcept C152877465 @default.
- W3136993133 hasConcept C154945302 @default.
- W3136993133 hasConcept C191630685 @default.
- W3136993133 hasConcept C199360897 @default.
- W3136993133 hasConcept C2780801425 @default.
- W3136993133 hasConcept C33923547 @default.
- W3136993133 hasConcept C41008148 @default.
- W3136993133 hasConcept C45804977 @default.
- W3136993133 hasConcept C83546350 @default.
- W3136993133 hasConceptScore W3136993133C105795698 @default.
- W3136993133 hasConceptScore W3136993133C119599485 @default.