Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136994940> ?p ?o ?g. }
- W3136994940 endingPage "e0249236" @default.
- W3136994940 startingPage "e0249236" @default.
- W3136994940 abstract "Challenges arise in researching health effects associated with chemical mixtures. Several methods have recently been proposed for estimating the association between health outcomes and exposure to chemical mixtures, but a formal simulation study comparing broad-ranging methods is lacking. We select five recently developed methods and evaluate their performance in estimating the exposure-response function, identifying active mixture components, and identifying interactions in a simulation study. Bayesian kernel machine regression (BKMR) and nonparametric Bayes shrinkage (NPB) were top-performing methods in our simulation study. BKMR and NPB outperformed other contemporary methods and traditional linear models in estimating the exposure-response function and identifying active mixture components. BKMR and NPB produced similar results in a data analysis of the effects of multipollutant exposure on lung function in children with asthma." @default.
- W3136994940 created "2021-03-29" @default.
- W3136994940 creator A5040036477 @default.
- W3136994940 creator A5060135763 @default.
- W3136994940 creator A5075009365 @default.
- W3136994940 creator A5079484982 @default.
- W3136994940 creator A5091715670 @default.
- W3136994940 date "2021-03-25" @default.
- W3136994940 modified "2023-09-27" @default.
- W3136994940 title "Model choice for estimating the association between exposure to chemical mixtures and health outcomes: A simulation study" @default.
- W3136994940 cites W118641914 @default.
- W3136994940 cites W1596460436 @default.
- W3136994940 cites W1741605569 @default.
- W3136994940 cites W1844075598 @default.
- W3136994940 cites W1874719720 @default.
- W3136994940 cites W1973204751 @default.
- W3136994940 cites W1987971958 @default.
- W3136994940 cites W1999414566 @default.
- W3136994940 cites W2018722998 @default.
- W3136994940 cites W2021276288 @default.
- W3136994940 cites W2024927544 @default.
- W3136994940 cites W2032630769 @default.
- W3136994940 cites W2034948859 @default.
- W3136994940 cites W2038017193 @default.
- W3136994940 cites W2049167993 @default.
- W3136994940 cites W2057691755 @default.
- W3136994940 cites W2059029763 @default.
- W3136994940 cites W2059678049 @default.
- W3136994940 cites W2063946399 @default.
- W3136994940 cites W2065273182 @default.
- W3136994940 cites W2074601501 @default.
- W3136994940 cites W2080243819 @default.
- W3136994940 cites W2085907924 @default.
- W3136994940 cites W2087815776 @default.
- W3136994940 cites W2088399822 @default.
- W3136994940 cites W2105610724 @default.
- W3136994940 cites W2111097188 @default.
- W3136994940 cites W2113912428 @default.
- W3136994940 cites W2121598940 @default.
- W3136994940 cites W2138005900 @default.
- W3136994940 cites W2138028307 @default.
- W3136994940 cites W2138956428 @default.
- W3136994940 cites W2159507084 @default.
- W3136994940 cites W2161554942 @default.
- W3136994940 cites W2163398655 @default.
- W3136994940 cites W2164547844 @default.
- W3136994940 cites W2165553663 @default.
- W3136994940 cites W2186706328 @default.
- W3136994940 cites W2318698569 @default.
- W3136994940 cites W2321635716 @default.
- W3136994940 cites W2326111428 @default.
- W3136994940 cites W2329787183 @default.
- W3136994940 cites W2331079961 @default.
- W3136994940 cites W2401468526 @default.
- W3136994940 cites W2462794150 @default.
- W3136994940 cites W2558877279 @default.
- W3136994940 cites W2560258092 @default.
- W3136994940 cites W2725857760 @default.
- W3136994940 cites W2779159526 @default.
- W3136994940 cites W2781505895 @default.
- W3136994940 cites W2792644449 @default.
- W3136994940 cites W2795561663 @default.
- W3136994940 cites W2796110804 @default.
- W3136994940 cites W2944521226 @default.
- W3136994940 cites W3016515262 @default.
- W3136994940 cites W3043559873 @default.
- W3136994940 cites W3102998992 @default.
- W3136994940 cites W4255397515 @default.
- W3136994940 doi "https://doi.org/10.1371/journal.pone.0249236" @default.
- W3136994940 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7993848" @default.
- W3136994940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33765068" @default.
- W3136994940 hasPublicationYear "2021" @default.
- W3136994940 type Work @default.
- W3136994940 sameAs 3136994940 @default.
- W3136994940 citedByCount "2" @default.
- W3136994940 countsByYear W31369949402022 @default.
- W3136994940 crossrefType "journal-article" @default.
- W3136994940 hasAuthorship W3136994940A5040036477 @default.
- W3136994940 hasAuthorship W3136994940A5060135763 @default.
- W3136994940 hasAuthorship W3136994940A5075009365 @default.
- W3136994940 hasAuthorship W3136994940A5079484982 @default.
- W3136994940 hasAuthorship W3136994940A5091715670 @default.
- W3136994940 hasBestOaLocation W31369949401 @default.
- W3136994940 hasConcept C102366305 @default.
- W3136994940 hasConcept C105795698 @default.
- W3136994940 hasConcept C107673813 @default.
- W3136994940 hasConcept C119043178 @default.
- W3136994940 hasConcept C119857082 @default.
- W3136994940 hasConcept C124101348 @default.
- W3136994940 hasConcept C126322002 @default.
- W3136994940 hasConcept C142853389 @default.
- W3136994940 hasConcept C154945302 @default.
- W3136994940 hasConcept C15744967 @default.
- W3136994940 hasConcept C163175372 @default.
- W3136994940 hasConcept C207201462 @default.
- W3136994940 hasConcept C2777714996 @default.
- W3136994940 hasConcept C3018587741 @default.
- W3136994940 hasConcept C33923547 @default.