Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136998936> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3136998936 abstract "Features representation leverages the great power in network analysis tasks. However, most features are discrete which poses tremendous challenges to effective use. Recently, increasing attention has been paid on network feature learning, which could map discrete features to continued space. Unfortunately, current studies fail to fully preserve the structural information in the feature space due to random negative sampling strategy during training. To tackle this problem, we study the problem of feature learning and novelty propose a force-based graph learning model named GForce inspired by the spring-electrical model. GForce assumes that nodes are in attractive forces and repulsive forces, thus leading to the same representation with the original structural information in feature learning. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed framework. Furthermore, GForce opens up opportunities to use physics models to model node interaction for graph learning." @default.
- W3136998936 created "2021-03-29" @default.
- W3136998936 creator A5003527952 @default.
- W3136998936 creator A5004781883 @default.
- W3136998936 creator A5022604762 @default.
- W3136998936 creator A5068048142 @default.
- W3136998936 creator A5089615958 @default.
- W3136998936 date "2020-12-10" @default.
- W3136998936 modified "2023-09-23" @default.
- W3136998936 title "Graph Force Learning" @default.
- W3136998936 cites W2001141328 @default.
- W3136998936 cites W2090891622 @default.
- W3136998936 cites W2163922914 @default.
- W3136998936 cites W2387462954 @default.
- W3136998936 cites W2393319904 @default.
- W3136998936 cites W2508034622 @default.
- W3136998936 cites W2530863813 @default.
- W3136998936 cites W2547026977 @default.
- W3136998936 cites W2601986939 @default.
- W3136998936 cites W2725171488 @default.
- W3136998936 cites W2804721500 @default.
- W3136998936 cites W2908404712 @default.
- W3136998936 cites W2950393809 @default.
- W3136998936 cites W2952574282 @default.
- W3136998936 cites W2952650776 @default.
- W3136998936 cites W2952933729 @default.
- W3136998936 cites W2953791858 @default.
- W3136998936 cites W2962756421 @default.
- W3136998936 cites W2962946486 @default.
- W3136998936 cites W2962975498 @default.
- W3136998936 cites W2963066159 @default.
- W3136998936 cites W2963125977 @default.
- W3136998936 cites W2963146368 @default.
- W3136998936 cites W2964891022 @default.
- W3136998936 cites W2979845147 @default.
- W3136998936 cites W2998176787 @default.
- W3136998936 cites W3006318668 @default.
- W3136998936 cites W3011667710 @default.
- W3136998936 cites W3104097132 @default.
- W3136998936 cites W3104871037 @default.
- W3136998936 cites W3105705953 @default.
- W3136998936 doi "https://doi.org/10.1109/bigdata50022.2020.9378120" @default.
- W3136998936 hasPublicationYear "2020" @default.
- W3136998936 type Work @default.
- W3136998936 sameAs 3136998936 @default.
- W3136998936 citedByCount "3" @default.
- W3136998936 countsByYear W31369989362022 @default.
- W3136998936 crossrefType "proceedings-article" @default.
- W3136998936 hasAuthorship W3136998936A5003527952 @default.
- W3136998936 hasAuthorship W3136998936A5004781883 @default.
- W3136998936 hasAuthorship W3136998936A5022604762 @default.
- W3136998936 hasAuthorship W3136998936A5068048142 @default.
- W3136998936 hasAuthorship W3136998936A5089615958 @default.
- W3136998936 hasBestOaLocation W31369989362 @default.
- W3136998936 hasConcept C154945302 @default.
- W3136998936 hasConcept C41008148 @default.
- W3136998936 hasConceptScore W3136998936C154945302 @default.
- W3136998936 hasConceptScore W3136998936C41008148 @default.
- W3136998936 hasLocation W31369989361 @default.
- W3136998936 hasLocation W31369989362 @default.
- W3136998936 hasOpenAccess W3136998936 @default.
- W3136998936 hasPrimaryLocation W31369989361 @default.
- W3136998936 hasRelatedWork W2093578348 @default.
- W3136998936 hasRelatedWork W2096946506 @default.
- W3136998936 hasRelatedWork W2358668433 @default.
- W3136998936 hasRelatedWork W2376932109 @default.
- W3136998936 hasRelatedWork W2382290278 @default.
- W3136998936 hasRelatedWork W2390279801 @default.
- W3136998936 hasRelatedWork W2748952813 @default.
- W3136998936 hasRelatedWork W2766271392 @default.
- W3136998936 hasRelatedWork W2899084033 @default.
- W3136998936 hasRelatedWork W3107474891 @default.
- W3136998936 isParatext "false" @default.
- W3136998936 isRetracted "false" @default.
- W3136998936 magId "3136998936" @default.
- W3136998936 workType "article" @default.