Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137011644> ?p ?o ?g. }
- W3137011644 endingPage "111010" @default.
- W3137011644 startingPage "111010" @default.
- W3137011644 abstract "A spatiotemporal land use regression (LUR) model optimized to predict nitrogen dioxide (NO2) concentrations obtained from on-road, mobile measurements collected in 2015–16 was independently evaluated using concentrations observed at multiple sites across Toronto, Canada, obtained more than ten years earlier. This spatiotemporal LUR modelling approach improves upon estimates of historical NO2 concentrations derived from the previously used method of back-extrapolation. The optimal spatiotemporal LUR model (R2 = 0.71 for prediction of NO2 data in 2002 and 2004) uses daily average NO2 concentrations observed at multiple long-term monitoring sites and hourly average wind speed recorded at a single site, along with spatial predictors based on geographical information system data, to estimate NO2 levels for time periods outside of those used for model development. While the model tended to underestimate samplers located close to the roadway, it showed great accuracy when estimating samplers located beyond 100 m which are probably more relevant for exposure at residences. This study shows that spatiotemporal LUR models developed from strategic, multi-day (30 days in 3 different months) mobile measurements can enhance LUR model's ability to estimate long-term, intra-urban NO2 patterns. Furthermore, the mobile sampling strategy enabled this new LUR model to cover a larger domain of Toronto and outlying suburban communities, thereby increasing the potential population for future epidemiological studies." @default.
- W3137011644 created "2021-03-29" @default.
- W3137011644 creator A5002629392 @default.
- W3137011644 creator A5019276595 @default.
- W3137011644 creator A5034074173 @default.
- W3137011644 creator A5066987216 @default.
- W3137011644 date "2021-05-01" @default.
- W3137011644 modified "2023-09-26" @default.
- W3137011644 title "Characterizing long-term NO2 concentration surfaces across a large metropolitan area through spatiotemporal land use regression modelling of mobile measurements" @default.
- W3137011644 cites W1972706266 @default.
- W3137011644 cites W1976519927 @default.
- W3137011644 cites W1983537108 @default.
- W3137011644 cites W1995587747 @default.
- W3137011644 cites W2002094444 @default.
- W3137011644 cites W2003207330 @default.
- W3137011644 cites W2012037158 @default.
- W3137011644 cites W2027119081 @default.
- W3137011644 cites W2043388201 @default.
- W3137011644 cites W2049372139 @default.
- W3137011644 cites W2063706603 @default.
- W3137011644 cites W2081068945 @default.
- W3137011644 cites W2081689933 @default.
- W3137011644 cites W2084059271 @default.
- W3137011644 cites W2084554826 @default.
- W3137011644 cites W2092163403 @default.
- W3137011644 cites W2105150627 @default.
- W3137011644 cites W2129328361 @default.
- W3137011644 cites W2129447215 @default.
- W3137011644 cites W2133318234 @default.
- W3137011644 cites W2139215973 @default.
- W3137011644 cites W2146300364 @default.
- W3137011644 cites W2157963791 @default.
- W3137011644 cites W2160831521 @default.
- W3137011644 cites W2186856468 @default.
- W3137011644 cites W2308025496 @default.
- W3137011644 cites W2318853775 @default.
- W3137011644 cites W2321180029 @default.
- W3137011644 cites W2331379714 @default.
- W3137011644 cites W2345888299 @default.
- W3137011644 cites W2352017734 @default.
- W3137011644 cites W2394016895 @default.
- W3137011644 cites W2434823106 @default.
- W3137011644 cites W2546950881 @default.
- W3137011644 cites W2592926323 @default.
- W3137011644 cites W2621121878 @default.
- W3137011644 cites W2753495494 @default.
- W3137011644 cites W2766555139 @default.
- W3137011644 cites W2772970961 @default.
- W3137011644 cites W2788541899 @default.
- W3137011644 cites W2797089804 @default.
- W3137011644 cites W2803805021 @default.
- W3137011644 cites W2804239627 @default.
- W3137011644 cites W2808919197 @default.
- W3137011644 cites W2896283956 @default.
- W3137011644 cites W2907773908 @default.
- W3137011644 cites W2947620908 @default.
- W3137011644 cites W2964378914 @default.
- W3137011644 cites W3080970490 @default.
- W3137011644 cites W420306511 @default.
- W3137011644 cites W827851732 @default.
- W3137011644 doi "https://doi.org/10.1016/j.envres.2021.111010" @default.
- W3137011644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33716024" @default.
- W3137011644 hasPublicationYear "2021" @default.
- W3137011644 type Work @default.
- W3137011644 sameAs 3137011644 @default.
- W3137011644 citedByCount "3" @default.
- W3137011644 countsByYear W31370116442022 @default.
- W3137011644 countsByYear W31370116442023 @default.
- W3137011644 crossrefType "journal-article" @default.
- W3137011644 hasAuthorship W3137011644A5002629392 @default.
- W3137011644 hasAuthorship W3137011644A5019276595 @default.
- W3137011644 hasAuthorship W3137011644A5034074173 @default.
- W3137011644 hasAuthorship W3137011644A5066987216 @default.
- W3137011644 hasConcept C100970517 @default.
- W3137011644 hasConcept C105795698 @default.
- W3137011644 hasConcept C106131492 @default.
- W3137011644 hasConcept C121332964 @default.
- W3137011644 hasConcept C132459708 @default.
- W3137011644 hasConcept C140779682 @default.
- W3137011644 hasConcept C144024400 @default.
- W3137011644 hasConcept C149923435 @default.
- W3137011644 hasConcept C152877465 @default.
- W3137011644 hasConcept C153294291 @default.
- W3137011644 hasConcept C158739034 @default.
- W3137011644 hasConcept C166957645 @default.
- W3137011644 hasConcept C18903297 @default.
- W3137011644 hasConcept C205649164 @default.
- W3137011644 hasConcept C2780648208 @default.
- W3137011644 hasConcept C2908647359 @default.
- W3137011644 hasConcept C31972630 @default.
- W3137011644 hasConcept C33923547 @default.
- W3137011644 hasConcept C39432304 @default.
- W3137011644 hasConcept C41008148 @default.
- W3137011644 hasConcept C4792198 @default.
- W3137011644 hasConcept C61797465 @default.
- W3137011644 hasConcept C62520636 @default.
- W3137011644 hasConcept C86803240 @default.
- W3137011644 hasConceptScore W3137011644C100970517 @default.