Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137072302> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W3137072302 abstract "Abstract A methodology for the automatic mesh generation of triangular and quadrilateral finite element discretizations for two-dimensional elasticity problems is proposed. The methodology is based on: i) an h-adaptive process with powerful mesh generator facilities capable of achieving meshes of specified density, ii) a general stress recovery technique developed for determining the element solutions at the nodes, and iii) an a posteriori error estimation. The h-adaptive process used is based on a complete mesh regeneration procedure which is guided by specified mesh requirements such as geometry definitions, boundary conditions, and space node functions to achieve an optimal refinement. This optimality condition is, as established by Zienkiewicz and Zhu, the mesh refinement with the least number of elements that yields a uniform strain energy norm error distribution in all elements. In the stress recovery process, the nodal values are assumed to belong to a polynomial expansion of the same complete order in the interpolation function basis used, which is valid over all elements adjoining a particular node. A least-squares fit of superconvergent sampling points existing in the path is used to obtain the recovered nodal point parameters for each element. These parameters are averaged to all elements adjoining the node of interest. The technique is simple and cost-effective, and the recovered nodal values of derivatives are superconvergent at the Gauss integration points, which are used as sampling points for quadrilateral elements. This condition is also achieved when centroid and mid-side points are used for triangular elements. The error estimation is done evaluating differences between the post-processed stress gradients and those from the finite element solutions. The energy error norm associated with stress field differences and the finite element predicted strain energy gives an effective error estimate which can be used for comparison with the process tolerance. The technique has been implemented and allows for a fully automatic numerical analysis under a specified global energy error norm. Numerical tests conducted with various planar element formulations illustrate that the proposed technique converges in fewer steps than with previous methods of adaptive mesh refinement." @default.
- W3137072302 created "2021-03-29" @default.
- W3137072302 creator A5071094211 @default.
- W3137072302 date "1994-09-11" @default.
- W3137072302 modified "2023-09-23" @default.
- W3137072302 title "Adaptivity and Mesh Generation in 2-D Finite Element Analysis" @default.
- W3137072302 doi "https://doi.org/10.1115/cie1994-0444" @default.
- W3137072302 hasPublicationYear "1994" @default.
- W3137072302 type Work @default.
- W3137072302 sameAs 3137072302 @default.
- W3137072302 citedByCount "0" @default.
- W3137072302 crossrefType "proceedings-article" @default.
- W3137072302 hasAuthorship W3137072302A5071094211 @default.
- W3137072302 hasConcept C127413603 @default.
- W3137072302 hasConcept C135628077 @default.
- W3137072302 hasConcept C181145010 @default.
- W3137072302 hasConcept C33923547 @default.
- W3137072302 hasConcept C41008148 @default.
- W3137072302 hasConcept C66938386 @default.
- W3137072302 hasConceptScore W3137072302C127413603 @default.
- W3137072302 hasConceptScore W3137072302C135628077 @default.
- W3137072302 hasConceptScore W3137072302C181145010 @default.
- W3137072302 hasConceptScore W3137072302C33923547 @default.
- W3137072302 hasConceptScore W3137072302C41008148 @default.
- W3137072302 hasConceptScore W3137072302C66938386 @default.
- W3137072302 hasLocation W31370723021 @default.
- W3137072302 hasOpenAccess W3137072302 @default.
- W3137072302 hasPrimaryLocation W31370723021 @default.
- W3137072302 hasRelatedWork W1727903773 @default.
- W3137072302 hasRelatedWork W1994749144 @default.
- W3137072302 hasRelatedWork W1995909287 @default.
- W3137072302 hasRelatedWork W2022922148 @default.
- W3137072302 hasRelatedWork W2038162840 @default.
- W3137072302 hasRelatedWork W2047976787 @default.
- W3137072302 hasRelatedWork W2050995602 @default.
- W3137072302 hasRelatedWork W2075962376 @default.
- W3137072302 hasRelatedWork W2077456315 @default.
- W3137072302 hasRelatedWork W2087714792 @default.
- W3137072302 hasRelatedWork W2103821365 @default.
- W3137072302 hasRelatedWork W2145213293 @default.
- W3137072302 hasRelatedWork W2147792596 @default.
- W3137072302 hasRelatedWork W2154173349 @default.
- W3137072302 hasRelatedWork W2155460409 @default.
- W3137072302 hasRelatedWork W2170102782 @default.
- W3137072302 hasRelatedWork W2171853617 @default.
- W3137072302 hasRelatedWork W2529774232 @default.
- W3137072302 hasRelatedWork W2615431528 @default.
- W3137072302 hasRelatedWork W3167621092 @default.
- W3137072302 isParatext "false" @default.
- W3137072302 isRetracted "false" @default.
- W3137072302 magId "3137072302" @default.
- W3137072302 workType "article" @default.