Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137124328> ?p ?o ?g. }
- W3137124328 endingPage "1698" @default.
- W3137124328 startingPage "1685" @default.
- W3137124328 abstract "ConspectusVibrational wavepacket motions on potential energy surfaces are one of the critical factors that determine the reaction dynamics of photoinduced reactions. The motions of vibrational wavepackets are often discussed in the interpretation of observables measured with various time-resolved vibrational or electronic spectroscopies but mostly in terms of the frequencies of wavepacket motions, which are approximated by normal modes, rather than the actual positions of the wavepacket. Although the time-dependent positions (that is, the trajectory) of wavepackets are hypothesized or drawn in imagined or calculated potential energy surfaces, it is not trivial to experimentally determine the trajectory of wavepackets, especially in multidimensional nuclear coordinates for a polyatomic molecule. Recently, we performed a femtosecond X-ray liquidography (solution scattering) experiment on a gold trimer complex (GTC), [Au(CN)2–]3, in water at X-ray free-electron lasers (XFELs) and elucidated the time-dependent positions of vibrational wavepackets from the Franck–Condon region to equilibrium structures on both excited and ground states in the course of the formation of covalent bonds between gold atoms.Bond making is an essential process in chemical reactions, but it is challenging to keep track of detailed atomic movements associated with bond making because of its bimolecular nature that requires slow diffusion of two reaction parties to meet each other. Bond formation in the solution phase has been elusive because the diffusion of the reactants limits the reaction rate of a bimolecular process, making it difficult to initiate and track the bond-making processes with an ultrafast time resolution. In principle, if the bimolecular encounter can be controlled to overcome the limitation caused by diffusion, the bond-making processes can be tracked in a time-resolved manner, providing valuable insight into the bimolecular reaction mechanism. In this regard, GTC offers a good model system for studying the dynamics of bond formation in solution. Au(I) atoms in GTC exhibit a noncovalent aurophilic interaction, making GTC an aggregate complex without any covalent bond. Upon photoexcitation of GTC, an electron is excited from an antibonding orbital to a bonding orbital, leading to the formation of covalent bonds among Au atoms. Since Au atoms in the ground state of GTC are located in close proximity within the same solvent cage, the formation of Au–Au covalent bonds occurs without its reaction rate being limited by diffusion through the solvent.Femtosecond time-resolved X-ray liquidography (fs-TRXL) data revealed that the ground state has an asymmetric bent structure. From the wavepacket trajectory determined in three-dimensional nuclear coordinates (two internuclear distances and one bond angle), we found that two covalent bonds are formed between three Au atoms of GTC asynchronously. Specifically, one covalent bond is formed first for the shorter Au–Au pair (of the asymmetric and bent ground-state structure) in 35 fs, and subsequently, the other covalent bond is formed for the longer Au–Au pair within 360 fs. The resultant trimer complex has a symmetric and linear geometry, implying the occurrence of bent-to-linear transformation concomitant with the formation of two equivalent covalent bonds, and exhibits vibrations that can be unambiguously assigned to specific normal modes based on the wavepacket trajectory, even without the vibrational frequencies provided by quantum calculation." @default.
- W3137124328 created "2021-03-29" @default.
- W3137124328 creator A5026654905 @default.
- W3137124328 creator A5050472874 @default.
- W3137124328 creator A5068863234 @default.
- W3137124328 creator A5073541718 @default.
- W3137124328 date "2021-03-18" @default.
- W3137124328 modified "2023-09-27" @default.
- W3137124328 title "Femtosecond X-ray Liquidography Visualizes Wavepacket Trajectories in Multidimensional Nuclear Coordinates for a Bimolecular Reaction" @default.
- W3137124328 cites W1971526188 @default.
- W3137124328 cites W1980799223 @default.
- W3137124328 cites W1981184997 @default.
- W3137124328 cites W1997822254 @default.
- W3137124328 cites W2003771289 @default.
- W3137124328 cites W2013745839 @default.
- W3137124328 cites W2015102774 @default.
- W3137124328 cites W2034713637 @default.
- W3137124328 cites W2037121321 @default.
- W3137124328 cites W2045910254 @default.
- W3137124328 cites W2046219984 @default.
- W3137124328 cites W2051888009 @default.
- W3137124328 cites W2052588797 @default.
- W3137124328 cites W2054355794 @default.
- W3137124328 cites W2055311621 @default.
- W3137124328 cites W2062091453 @default.
- W3137124328 cites W2068069453 @default.
- W3137124328 cites W2069793801 @default.
- W3137124328 cites W2072516696 @default.
- W3137124328 cites W2073517135 @default.
- W3137124328 cites W2081303918 @default.
- W3137124328 cites W2083890120 @default.
- W3137124328 cites W2083902068 @default.
- W3137124328 cites W2087088685 @default.
- W3137124328 cites W2101828604 @default.
- W3137124328 cites W2103191961 @default.
- W3137124328 cites W2116726825 @default.
- W3137124328 cites W2129537502 @default.
- W3137124328 cites W2129543280 @default.
- W3137124328 cites W2160765285 @default.
- W3137124328 cites W2163557107 @default.
- W3137124328 cites W2169983477 @default.
- W3137124328 cites W2313178592 @default.
- W3137124328 cites W2317917755 @default.
- W3137124328 cites W2343967840 @default.
- W3137124328 cites W2409779650 @default.
- W3137124328 cites W2470055100 @default.
- W3137124328 cites W2484920950 @default.
- W3137124328 cites W2517509526 @default.
- W3137124328 cites W2518282888 @default.
- W3137124328 cites W2558560207 @default.
- W3137124328 cites W2766421668 @default.
- W3137124328 cites W2795554516 @default.
- W3137124328 cites W2808639566 @default.
- W3137124328 cites W2809707288 @default.
- W3137124328 cites W2864339694 @default.
- W3137124328 cites W2883418834 @default.
- W3137124328 cites W2892633317 @default.
- W3137124328 cites W2900587326 @default.
- W3137124328 cites W2905364170 @default.
- W3137124328 cites W2906077462 @default.
- W3137124328 cites W2910521141 @default.
- W3137124328 cites W2910581328 @default.
- W3137124328 cites W2912966674 @default.
- W3137124328 cites W2921667772 @default.
- W3137124328 cites W2926421617 @default.
- W3137124328 cites W2935477233 @default.
- W3137124328 cites W2939090891 @default.
- W3137124328 cites W2949317333 @default.
- W3137124328 cites W2950316780 @default.
- W3137124328 cites W2954692534 @default.
- W3137124328 cites W2961104043 @default.
- W3137124328 cites W3026847731 @default.
- W3137124328 cites W3034187114 @default.
- W3137124328 cites W3037587471 @default.
- W3137124328 cites W3098707026 @default.
- W3137124328 cites W3098750677 @default.
- W3137124328 cites W3103385927 @default.
- W3137124328 doi "https://doi.org/10.1021/acs.accounts.0c00812" @default.
- W3137124328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33733724" @default.
- W3137124328 hasPublicationYear "2021" @default.
- W3137124328 type Work @default.
- W3137124328 sameAs 3137124328 @default.
- W3137124328 citedByCount "6" @default.
- W3137124328 countsByYear W31371243282021 @default.
- W3137124328 countsByYear W31371243282022 @default.
- W3137124328 countsByYear W31371243282023 @default.
- W3137124328 crossrefType "journal-article" @default.
- W3137124328 hasAuthorship W3137124328A5026654905 @default.
- W3137124328 hasAuthorship W3137124328A5050472874 @default.
- W3137124328 hasAuthorship W3137124328A5068863234 @default.
- W3137124328 hasAuthorship W3137124328A5073541718 @default.
- W3137124328 hasConcept C106978608 @default.
- W3137124328 hasConcept C121332964 @default.
- W3137124328 hasConcept C159467904 @default.
- W3137124328 hasConcept C167735695 @default.
- W3137124328 hasConcept C178790620 @default.
- W3137124328 hasConcept C181500209 @default.
- W3137124328 hasConcept C184779094 @default.