Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137161780> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3137161780 endingPage "12" @default.
- W3137161780 startingPage "6" @default.
- W3137161780 abstract "On the basis of A. N. Tikhonov’s regularization theory, a method is developed for solving inverse heat conduction problems of identifying a smooth outer boundary of a two-dimensional region with a known boundary condition. For this, the smooth boundary to be identified is approximated by Schoenberg’s cubic splines, as a result of which its identification is reduced to determining the unknown approximation coefficients. With known boundary and initial conditions, the body temperature will depend only on these coefficients. With the temperature expressed using the Taylor formula for two series terms and substituted into the Tikhonov functional, the problem of determining the increments of the coefficients can be reduced to solving a system of linear equations with respect to these increments. Having chosen a certain regularization parameter and a certain function describing the shape of the outer boundary as an initial approximation, one can implement an iterative process. In this process, the vector of unknown coefficients for the current iteration will be equal to the sum of the vector of coefficients in the previous iteration and the vector of the increments of these coefficients, obtained as a result of solving a system of linear equations. Having obtained a vector of coefficients as a result of a converging iterative process, it is possible to determine the root-mean-square discrepancy between the temperature obtained and the temperature measured as a result of the experiment. It remains to select the regularization parameter in such a way that this discrepancy is within the measurement error. The method itself and the ways of its implementation are the novelty of the material presented in this paper in comparison with other authors’ approaches to the solution of geometric inverse heat conduction problems. When checking the effectiveness of using the method proposed, a number of two-dimensional test problems for bodies with a known location of the outer boundary were solved. An analysis of the influence of random measurement errors on the error in identifying the outer boundary shape is carried out." @default.
- W3137161780 created "2021-03-29" @default.
- W3137161780 creator A5006214502 @default.
- W3137161780 creator A5056399261 @default.
- W3137161780 date "2021-03-30" @default.
- W3137161780 modified "2023-09-27" @default.
- W3137161780 title "To the Solution of Geometric Inverse Heat Conduction Problems" @default.
- W3137161780 cites W2103127785 @default.
- W3137161780 cites W2937214657 @default.
- W3137161780 cites W3036627829 @default.
- W3137161780 doi "https://doi.org/10.15407/pmach2021.01.006" @default.
- W3137161780 hasPublicationYear "2021" @default.
- W3137161780 type Work @default.
- W3137161780 sameAs 3137161780 @default.
- W3137161780 citedByCount "2" @default.
- W3137161780 countsByYear W31371617802021 @default.
- W3137161780 countsByYear W31371617802022 @default.
- W3137161780 crossrefType "journal-article" @default.
- W3137161780 hasAuthorship W3137161780A5006214502 @default.
- W3137161780 hasAuthorship W3137161780A5056399261 @default.
- W3137161780 hasBestOaLocation W31371617801 @default.
- W3137161780 hasConcept C121332964 @default.
- W3137161780 hasConcept C134306372 @default.
- W3137161780 hasConcept C135252773 @default.
- W3137161780 hasConcept C152442038 @default.
- W3137161780 hasConcept C154945302 @default.
- W3137161780 hasConcept C172100665 @default.
- W3137161780 hasConcept C182310444 @default.
- W3137161780 hasConcept C207467116 @default.
- W3137161780 hasConcept C2524010 @default.
- W3137161780 hasConcept C2776135515 @default.
- W3137161780 hasConcept C28826006 @default.
- W3137161780 hasConcept C33923547 @default.
- W3137161780 hasConcept C41008148 @default.
- W3137161780 hasConcept C62354387 @default.
- W3137161780 hasConcept C97355855 @default.
- W3137161780 hasConceptScore W3137161780C121332964 @default.
- W3137161780 hasConceptScore W3137161780C134306372 @default.
- W3137161780 hasConceptScore W3137161780C135252773 @default.
- W3137161780 hasConceptScore W3137161780C152442038 @default.
- W3137161780 hasConceptScore W3137161780C154945302 @default.
- W3137161780 hasConceptScore W3137161780C172100665 @default.
- W3137161780 hasConceptScore W3137161780C182310444 @default.
- W3137161780 hasConceptScore W3137161780C207467116 @default.
- W3137161780 hasConceptScore W3137161780C2524010 @default.
- W3137161780 hasConceptScore W3137161780C2776135515 @default.
- W3137161780 hasConceptScore W3137161780C28826006 @default.
- W3137161780 hasConceptScore W3137161780C33923547 @default.
- W3137161780 hasConceptScore W3137161780C41008148 @default.
- W3137161780 hasConceptScore W3137161780C62354387 @default.
- W3137161780 hasConceptScore W3137161780C97355855 @default.
- W3137161780 hasIssue "1" @default.
- W3137161780 hasLocation W31371617801 @default.
- W3137161780 hasLocation W31371617802 @default.
- W3137161780 hasOpenAccess W3137161780 @default.
- W3137161780 hasPrimaryLocation W31371617801 @default.
- W3137161780 hasRelatedWork W1985097855 @default.
- W3137161780 hasRelatedWork W2094103155 @default.
- W3137161780 hasRelatedWork W2370981358 @default.
- W3137161780 hasRelatedWork W2373436489 @default.
- W3137161780 hasRelatedWork W2507941141 @default.
- W3137161780 hasRelatedWork W2521794430 @default.
- W3137161780 hasRelatedWork W2594184273 @default.
- W3137161780 hasRelatedWork W3169799480 @default.
- W3137161780 hasRelatedWork W4210488957 @default.
- W3137161780 hasRelatedWork W4385317013 @default.
- W3137161780 hasVolume "24" @default.
- W3137161780 isParatext "false" @default.
- W3137161780 isRetracted "false" @default.
- W3137161780 magId "3137161780" @default.
- W3137161780 workType "article" @default.