Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137174002> ?p ?o ?g. }
- W3137174002 abstract "Abstract Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the tropics. Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas where the virus has not been reported for decades, consisting of urban areas where a large number of unvaccinated people live. We developed a machine learning framework combining three different algorithms (XGBoost, random forest and regularized logistic regression). This method was applied to 56 YFV sequences from human infections and 27 from non-human primate (NHPs) infections to investigate the presence of genetic signatures possibly related to disease severity (in human related sequences) and differences in the PCR cycle threshold (Ct) values (in NHP related sequences). Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G, V643A) and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1 (A171V), NS3 (I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein structural analysis on these SNVs, describing possible impacts on protein function. Despite the fact that the dataset is limited in size and that this study does not consider virus-host interactions, our work highlights the use of machine learning as a versatile and fast initial approach to genomic data exploration. Importance Yellow fever is responsible for 29-60 thousand deaths annually in South America and Africa and is the most severe mosquito-borne disease in the tropics. Given the range of clinical outcomes and the availability of YFV genomic data, the use of machine learning analysis promises to be a powerful tool in the investigation of genetic signatures that could impact disease severity and its potential of being reintroduced in an urban transmission cycle. This can assist in the search for biomarkers of severity as well as help elucidating variations in host’s Ct value. This work aims to propose a relatively fast and inexpensive computational analysis framework, which can be used as a real-time, innitial strategy associated with genomic surveillance to identify a set of single nucleotide variants putatively related to biological and clinical characteristics being observed." @default.
- W3137174002 created "2021-03-29" @default.
- W3137174002 creator A5002467237 @default.
- W3137174002 creator A5009298399 @default.
- W3137174002 creator A5011941415 @default.
- W3137174002 creator A5035901373 @default.
- W3137174002 creator A5039253759 @default.
- W3137174002 creator A5039296260 @default.
- W3137174002 creator A5062333789 @default.
- W3137174002 creator A5066817943 @default.
- W3137174002 creator A5074938320 @default.
- W3137174002 creator A5078439048 @default.
- W3137174002 creator A5086714399 @default.
- W3137174002 date "2021-03-24" @default.
- W3137174002 modified "2023-10-16" @default.
- W3137174002 title "Machine learning models exploring characteristic single-nucleotide signatures in Yellow Fever Virus" @default.
- W3137174002 cites W1499898492 @default.
- W3137174002 cites W1964571618 @default.
- W3137174002 cites W1973460918 @default.
- W3137174002 cites W1976424397 @default.
- W3137174002 cites W2010436800 @default.
- W3137174002 cites W2024970900 @default.
- W3137174002 cites W2032388524 @default.
- W3137174002 cites W2060809301 @default.
- W3137174002 cites W2061241820 @default.
- W3137174002 cites W2074763090 @default.
- W3137174002 cites W2091374137 @default.
- W3137174002 cites W2100483895 @default.
- W3137174002 cites W2118331279 @default.
- W3137174002 cites W2121780828 @default.
- W3137174002 cites W2152301430 @default.
- W3137174002 cites W2152905639 @default.
- W3137174002 cites W2158159015 @default.
- W3137174002 cites W2163412375 @default.
- W3137174002 cites W2168020168 @default.
- W3137174002 cites W2464163232 @default.
- W3137174002 cites W2497891252 @default.
- W3137174002 cites W2594066459 @default.
- W3137174002 cites W2605361745 @default.
- W3137174002 cites W2608233928 @default.
- W3137174002 cites W2746243082 @default.
- W3137174002 cites W2751583588 @default.
- W3137174002 cites W2797474345 @default.
- W3137174002 cites W2798042901 @default.
- W3137174002 cites W2889381121 @default.
- W3137174002 cites W2892741787 @default.
- W3137174002 cites W2909097948 @default.
- W3137174002 cites W2911964244 @default.
- W3137174002 cites W2922844241 @default.
- W3137174002 cites W2932714189 @default.
- W3137174002 cites W2946482289 @default.
- W3137174002 cites W2950068997 @default.
- W3137174002 cites W2953276316 @default.
- W3137174002 cites W2973523639 @default.
- W3137174002 cites W2990386108 @default.
- W3137174002 cites W2997906833 @default.
- W3137174002 cites W3000046011 @default.
- W3137174002 cites W3042238480 @default.
- W3137174002 cites W3048289012 @default.
- W3137174002 cites W3048580256 @default.
- W3137174002 cites W4249977334 @default.
- W3137174002 doi "https://doi.org/10.1101/2021.03.23.436688" @default.
- W3137174002 hasPublicationYear "2021" @default.
- W3137174002 type Work @default.
- W3137174002 sameAs 3137174002 @default.
- W3137174002 citedByCount "1" @default.
- W3137174002 countsByYear W31371740022022 @default.
- W3137174002 crossrefType "posted-content" @default.
- W3137174002 hasAuthorship W3137174002A5002467237 @default.
- W3137174002 hasAuthorship W3137174002A5009298399 @default.
- W3137174002 hasAuthorship W3137174002A5011941415 @default.
- W3137174002 hasAuthorship W3137174002A5035901373 @default.
- W3137174002 hasAuthorship W3137174002A5039253759 @default.
- W3137174002 hasAuthorship W3137174002A5039296260 @default.
- W3137174002 hasAuthorship W3137174002A5062333789 @default.
- W3137174002 hasAuthorship W3137174002A5066817943 @default.
- W3137174002 hasAuthorship W3137174002A5074938320 @default.
- W3137174002 hasAuthorship W3137174002A5078439048 @default.
- W3137174002 hasAuthorship W3137174002A5086714399 @default.
- W3137174002 hasBestOaLocation W31371740021 @default.
- W3137174002 hasConcept C116675565 @default.
- W3137174002 hasConcept C119857082 @default.
- W3137174002 hasConcept C142724271 @default.
- W3137174002 hasConcept C151956035 @default.
- W3137174002 hasConcept C159047783 @default.
- W3137174002 hasConcept C169258074 @default.
- W3137174002 hasConcept C187316915 @default.
- W3137174002 hasConcept C2522874641 @default.
- W3137174002 hasConcept C2779131611 @default.
- W3137174002 hasConcept C2779134260 @default.
- W3137174002 hasConcept C2908647359 @default.
- W3137174002 hasConcept C41008148 @default.
- W3137174002 hasConcept C70721500 @default.
- W3137174002 hasConcept C71924100 @default.
- W3137174002 hasConcept C86803240 @default.
- W3137174002 hasConcept C99454951 @default.
- W3137174002 hasConceptScore W3137174002C116675565 @default.
- W3137174002 hasConceptScore W3137174002C119857082 @default.
- W3137174002 hasConceptScore W3137174002C142724271 @default.
- W3137174002 hasConceptScore W3137174002C151956035 @default.