Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137177583> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3137177583 endingPage "2787" @default.
- W3137177583 startingPage "2787" @default.
- W3137177583 abstract "Fermentation is an age-old technique used to preserve food by restoring proper microbial balance. Boiled barley and nuruk are fermented for a short period to produce Shindari, a traditional beverage for the people of Jeju, South Korea. Shindari has been proven to be a drink of multiple health benefits if fermented for an optimal period. It is necessary to predict the ideal fermentation time required by each microbial community to keep the advantages of the microorganisms produced by the fermentation process in Shindari intact and to eliminate contamination. Prediction through machine learning requires past data but the process of obtaining fermentation data of Shindari is time consuming, expensive, and not easily available. Therefore, there is a need to generate synthetic fermentation data to explore various benefits of the drink and to reduce any risk from overfermentation. In this paper, we propose a model that takes incomplete tabular fermentation data of Shindari as input and uses multiple imputation ensemble (MIE) and generative adversarial networks (GAN) to generate synthetic fermentation data that can be later used for prediction and microbial spoilage control. For multiple imputation, we used multivariate imputation by chained equations and random forest imputation, and ensembling was done using the bagging and stacking method. For generating synthetic data, we remodeled the tabular GAN with skip connections and adapted the architecture of Wasserstein GAN with gradient penalty. We compared the performance of our model with other imputation and ensemble models using various evaluation metrics and visual representations. Our GAN model could overcome the mode collapse problem and converged at a faster rate than existing GAN models for synthetic data generation. Experiment results show that our proposed model executes with less error, is more accurate, and generates significantly better synthetic fermentation data compared to other models." @default.
- W3137177583 created "2021-03-29" @default.
- W3137177583 creator A5006748986 @default.
- W3137177583 creator A5036387071 @default.
- W3137177583 date "2021-03-20" @default.
- W3137177583 modified "2023-09-25" @default.
- W3137177583 title "Generating Synthetic Fermentation Data of Shindari, a Traditional Jeju Beverage, Using Multiple Imputation Ensemble and Generative Adversarial Networks" @default.
- W3137177583 cites W1992852845 @default.
- W3137177583 cites W2103308415 @default.
- W3137177583 cites W2115098571 @default.
- W3137177583 cites W2116444522 @default.
- W3137177583 cites W2120071261 @default.
- W3137177583 cites W2289846183 @default.
- W3137177583 cites W2581082906 @default.
- W3137177583 cites W2943118732 @default.
- W3137177583 cites W2989227906 @default.
- W3137177583 cites W3018026180 @default.
- W3137177583 cites W3039775522 @default.
- W3137177583 cites W3040441798 @default.
- W3137177583 cites W3083691853 @default.
- W3137177583 cites W3092478114 @default.
- W3137177583 cites W3107668265 @default.
- W3137177583 doi "https://doi.org/10.3390/app11062787" @default.
- W3137177583 hasPublicationYear "2021" @default.
- W3137177583 type Work @default.
- W3137177583 sameAs 3137177583 @default.
- W3137177583 citedByCount "6" @default.
- W3137177583 countsByYear W31371775832022 @default.
- W3137177583 countsByYear W31371775832023 @default.
- W3137177583 crossrefType "journal-article" @default.
- W3137177583 hasAuthorship W3137177583A5006748986 @default.
- W3137177583 hasAuthorship W3137177583A5036387071 @default.
- W3137177583 hasBestOaLocation W31371775831 @default.
- W3137177583 hasConcept C100544194 @default.
- W3137177583 hasConcept C119857082 @default.
- W3137177583 hasConcept C124101348 @default.
- W3137177583 hasConcept C154945302 @default.
- W3137177583 hasConcept C31903555 @default.
- W3137177583 hasConcept C41008148 @default.
- W3137177583 hasConcept C58041806 @default.
- W3137177583 hasConcept C86803240 @default.
- W3137177583 hasConcept C9357733 @default.
- W3137177583 hasConceptScore W3137177583C100544194 @default.
- W3137177583 hasConceptScore W3137177583C119857082 @default.
- W3137177583 hasConceptScore W3137177583C124101348 @default.
- W3137177583 hasConceptScore W3137177583C154945302 @default.
- W3137177583 hasConceptScore W3137177583C31903555 @default.
- W3137177583 hasConceptScore W3137177583C41008148 @default.
- W3137177583 hasConceptScore W3137177583C58041806 @default.
- W3137177583 hasConceptScore W3137177583C86803240 @default.
- W3137177583 hasConceptScore W3137177583C9357733 @default.
- W3137177583 hasFunder F4320322064 @default.
- W3137177583 hasIssue "6" @default.
- W3137177583 hasLocation W31371775831 @default.
- W3137177583 hasOpenAccess W3137177583 @default.
- W3137177583 hasPrimaryLocation W31371775831 @default.
- W3137177583 hasRelatedWork W2961085424 @default.
- W3137177583 hasRelatedWork W3046775127 @default.
- W3137177583 hasRelatedWork W3170094116 @default.
- W3137177583 hasRelatedWork W3209574120 @default.
- W3137177583 hasRelatedWork W4205958290 @default.
- W3137177583 hasRelatedWork W4285260836 @default.
- W3137177583 hasRelatedWork W4286629047 @default.
- W3137177583 hasRelatedWork W4306321456 @default.
- W3137177583 hasRelatedWork W4306674287 @default.
- W3137177583 hasRelatedWork W4224009465 @default.
- W3137177583 hasVolume "11" @default.
- W3137177583 isParatext "false" @default.
- W3137177583 isRetracted "false" @default.
- W3137177583 magId "3137177583" @default.
- W3137177583 workType "article" @default.