Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137181410> ?p ?o ?g. }
- W3137181410 endingPage "179" @default.
- W3137181410 startingPage "169" @default.
- W3137181410 abstract "In biology, the term “epistasis” indicates the effect of the interaction of a gene with another gene. A gene can interact with an independently sorted gene, located far away on the chromosome or on an entirely different chromosome, and this interaction can have a strong effect on the function of the two genes. These changes then can alter the consequences of the biological processes, influencing the organism’s phenotype. Machine learning is an area of computer science that develops statistical methods able to recognize patterns from data. A typical machine learning algorithm consists of a training phase, where the model learns to recognize specific trends in the data, and a test phase, where the trained model applies its learned intelligence to recognize trends in external data. Scientists have applied machine learning to epistasis problems multiple times, especially to identify gene–gene interactions from genome-wide association study (GWAS) data. In this brief survey, we report and describe the main scientific articles published in data mining and epistasis. Our article confirms the effectiveness of machine learning in this genetics subfield." @default.
- W3137181410 created "2021-03-29" @default.
- W3137181410 creator A5011556172 @default.
- W3137181410 creator A5052632916 @default.
- W3137181410 date "2021-01-01" @default.
- W3137181410 modified "2023-09-27" @default.
- W3137181410 title "Brief Survey on Machine Learning in Epistasis" @default.
- W3137181410 cites W1505191356 @default.
- W3137181410 cites W1516844016 @default.
- W3137181410 cites W1868492295 @default.
- W3137181410 cites W1980771638 @default.
- W3137181410 cites W1982747960 @default.
- W3137181410 cites W1986385996 @default.
- W3137181410 cites W2028545119 @default.
- W3137181410 cites W2033383209 @default.
- W3137181410 cites W2037366897 @default.
- W3137181410 cites W2045108516 @default.
- W3137181410 cites W2063230842 @default.
- W3137181410 cites W2070959105 @default.
- W3137181410 cites W2076220518 @default.
- W3137181410 cites W2082536587 @default.
- W3137181410 cites W2099522305 @default.
- W3137181410 cites W2109553965 @default.
- W3137181410 cites W2111060111 @default.
- W3137181410 cites W2122328291 @default.
- W3137181410 cites W2126964466 @default.
- W3137181410 cites W2156972843 @default.
- W3137181410 cites W2160480867 @default.
- W3137181410 cites W2163468216 @default.
- W3137181410 cites W2296218809 @default.
- W3137181410 cites W2319197375 @default.
- W3137181410 cites W2417512239 @default.
- W3137181410 cites W2443172870 @default.
- W3137181410 cites W2528491735 @default.
- W3137181410 cites W2551238128 @default.
- W3137181410 cites W2738022527 @default.
- W3137181410 cites W2771169143 @default.
- W3137181410 cites W2792984035 @default.
- W3137181410 cites W2807111212 @default.
- W3137181410 cites W2811394785 @default.
- W3137181410 cites W2890483294 @default.
- W3137181410 cites W2895756362 @default.
- W3137181410 cites W2898856197 @default.
- W3137181410 cites W2911964244 @default.
- W3137181410 cites W2912582131 @default.
- W3137181410 cites W2921693932 @default.
- W3137181410 cites W2945976633 @default.
- W3137181410 cites W2951915646 @default.
- W3137181410 cites W2953771961 @default.
- W3137181410 cites W2959750635 @default.
- W3137181410 cites W2999309192 @default.
- W3137181410 cites W2086578521 @default.
- W3137181410 doi "https://doi.org/10.1007/978-1-0716-0947-7_11" @default.
- W3137181410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33733356" @default.
- W3137181410 hasPublicationYear "2021" @default.
- W3137181410 type Work @default.
- W3137181410 sameAs 3137181410 @default.
- W3137181410 citedByCount "5" @default.
- W3137181410 countsByYear W31371814102021 @default.
- W3137181410 countsByYear W31371814102022 @default.
- W3137181410 countsByYear W31371814102023 @default.
- W3137181410 crossrefType "book-chapter" @default.
- W3137181410 hasAuthorship W3137181410A5011556172 @default.
- W3137181410 hasAuthorship W3137181410A5052632916 @default.
- W3137181410 hasConcept C104317684 @default.
- W3137181410 hasConcept C106208931 @default.
- W3137181410 hasConcept C119857082 @default.
- W3137181410 hasConcept C135763542 @default.
- W3137181410 hasConcept C153209595 @default.
- W3137181410 hasConcept C154945302 @default.
- W3137181410 hasConcept C30481170 @default.
- W3137181410 hasConcept C41008148 @default.
- W3137181410 hasConcept C54355233 @default.
- W3137181410 hasConcept C61727976 @default.
- W3137181410 hasConcept C70721500 @default.
- W3137181410 hasConcept C86803240 @default.
- W3137181410 hasConceptScore W3137181410C104317684 @default.
- W3137181410 hasConceptScore W3137181410C106208931 @default.
- W3137181410 hasConceptScore W3137181410C119857082 @default.
- W3137181410 hasConceptScore W3137181410C135763542 @default.
- W3137181410 hasConceptScore W3137181410C153209595 @default.
- W3137181410 hasConceptScore W3137181410C154945302 @default.
- W3137181410 hasConceptScore W3137181410C30481170 @default.
- W3137181410 hasConceptScore W3137181410C41008148 @default.
- W3137181410 hasConceptScore W3137181410C54355233 @default.
- W3137181410 hasConceptScore W3137181410C61727976 @default.
- W3137181410 hasConceptScore W3137181410C70721500 @default.
- W3137181410 hasConceptScore W3137181410C86803240 @default.
- W3137181410 hasLocation W31371814101 @default.
- W3137181410 hasOpenAccess W3137181410 @default.
- W3137181410 hasPrimaryLocation W31371814101 @default.
- W3137181410 hasRelatedWork W1887326336 @default.
- W3137181410 hasRelatedWork W1979673950 @default.
- W3137181410 hasRelatedWork W2009966535 @default.
- W3137181410 hasRelatedWork W2088063203 @default.
- W3137181410 hasRelatedWork W2134946690 @default.
- W3137181410 hasRelatedWork W2140249224 @default.
- W3137181410 hasRelatedWork W2171277769 @default.