Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137202499> ?p ?o ?g. }
- W3137202499 endingPage "654" @default.
- W3137202499 startingPage "654" @default.
- W3137202499 abstract "Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants in an individual’s sample in order to find if any of these variants are linked to a particular trait. In the last two decades, GWAS have contributed to several new discoveries in the field of genetics. This research presents a novel methodology to which GWAS can be applied to. It is mainly based on two machine learning methodologies, genetic algorithms and support vector machines. The database employed for the study consisted of information about 370,750 single-nucleotide polymorphisms belonging to 1076 cases of colorectal cancer and 973 controls. Ten pathways with different degrees of relationship with the trait under study were tested. The results obtained showed how the proposed methodology is able to detect relevant pathways for a certain trait: in this case, colorectal cancer." @default.
- W3137202499 created "2021-03-29" @default.
- W3137202499 creator A5011637537 @default.
- W3137202499 creator A5019963840 @default.
- W3137202499 creator A5021165388 @default.
- W3137202499 creator A5030510670 @default.
- W3137202499 creator A5048013245 @default.
- W3137202499 creator A5091400506 @default.
- W3137202499 date "2021-03-18" @default.
- W3137202499 modified "2023-10-17" @default.
- W3137202499 title "GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines" @default.
- W3137202499 cites W1966695829 @default.
- W3137202499 cites W1969673534 @default.
- W3137202499 cites W1975338031 @default.
- W3137202499 cites W2003172648 @default.
- W3137202499 cites W2012255354 @default.
- W3137202499 cites W2015860087 @default.
- W3137202499 cites W2021936091 @default.
- W3137202499 cites W2032512557 @default.
- W3137202499 cites W2058401000 @default.
- W3137202499 cites W2062748949 @default.
- W3137202499 cites W2067328319 @default.
- W3137202499 cites W2074768443 @default.
- W3137202499 cites W2091239497 @default.
- W3137202499 cites W2113784410 @default.
- W3137202499 cites W2119279196 @default.
- W3137202499 cites W2119796757 @default.
- W3137202499 cites W2122473859 @default.
- W3137202499 cites W2123844795 @default.
- W3137202499 cites W2126015874 @default.
- W3137202499 cites W2127230663 @default.
- W3137202499 cites W2140817897 @default.
- W3137202499 cites W2146848251 @default.
- W3137202499 cites W2148028878 @default.
- W3137202499 cites W2151554678 @default.
- W3137202499 cites W2153902319 @default.
- W3137202499 cites W2159594136 @default.
- W3137202499 cites W2160429819 @default.
- W3137202499 cites W2203819430 @default.
- W3137202499 cites W2340058834 @default.
- W3137202499 cites W2558960477 @default.
- W3137202499 cites W2747641769 @default.
- W3137202499 cites W2763406009 @default.
- W3137202499 cites W2767535879 @default.
- W3137202499 cites W2782811847 @default.
- W3137202499 cites W2792821257 @default.
- W3137202499 cites W2799837292 @default.
- W3137202499 cites W2803865364 @default.
- W3137202499 cites W2806717631 @default.
- W3137202499 cites W2808062019 @default.
- W3137202499 cites W2808576505 @default.
- W3137202499 cites W2883340853 @default.
- W3137202499 cites W2911046959 @default.
- W3137202499 cites W2950277954 @default.
- W3137202499 cites W2959750635 @default.
- W3137202499 cites W2969718750 @default.
- W3137202499 cites W2974842239 @default.
- W3137202499 cites W2990963824 @default.
- W3137202499 cites W3016610742 @default.
- W3137202499 cites W3045448138 @default.
- W3137202499 cites W3047586714 @default.
- W3137202499 cites W3047767927 @default.
- W3137202499 cites W3096828292 @default.
- W3137202499 cites W4294216483 @default.
- W3137202499 doi "https://doi.org/10.3390/math9060654" @default.
- W3137202499 hasPublicationYear "2021" @default.
- W3137202499 type Work @default.
- W3137202499 sameAs 3137202499 @default.
- W3137202499 citedByCount "7" @default.
- W3137202499 countsByYear W31372024992021 @default.
- W3137202499 countsByYear W31372024992022 @default.
- W3137202499 countsByYear W31372024992023 @default.
- W3137202499 crossrefType "journal-article" @default.
- W3137202499 hasAuthorship W3137202499A5011637537 @default.
- W3137202499 hasAuthorship W3137202499A5019963840 @default.
- W3137202499 hasAuthorship W3137202499A5021165388 @default.
- W3137202499 hasAuthorship W3137202499A5030510670 @default.
- W3137202499 hasAuthorship W3137202499A5048013245 @default.
- W3137202499 hasAuthorship W3137202499A5091400506 @default.
- W3137202499 hasBestOaLocation W31372024991 @default.
- W3137202499 hasConcept C104317684 @default.
- W3137202499 hasConcept C106208931 @default.
- W3137202499 hasConcept C106934330 @default.
- W3137202499 hasConcept C119857082 @default.
- W3137202499 hasConcept C12267149 @default.
- W3137202499 hasConcept C135763542 @default.
- W3137202499 hasConcept C139275648 @default.
- W3137202499 hasConcept C153209595 @default.
- W3137202499 hasConcept C186413461 @default.
- W3137202499 hasConcept C199360897 @default.
- W3137202499 hasConcept C41008148 @default.
- W3137202499 hasConcept C54355233 @default.
- W3137202499 hasConcept C70721500 @default.
- W3137202499 hasConcept C86803240 @default.
- W3137202499 hasConceptScore W3137202499C104317684 @default.
- W3137202499 hasConceptScore W3137202499C106208931 @default.
- W3137202499 hasConceptScore W3137202499C106934330 @default.
- W3137202499 hasConceptScore W3137202499C119857082 @default.