Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137265087> ?p ?o ?g. }
- W3137265087 endingPage "1225" @default.
- W3137265087 startingPage "1213" @default.
- W3137265087 abstract "Abstract Assessing diversity of discretely varying behaviour is a classical ethological problem. In particular, the challenge of calculating an individuals’ or species’ vocal repertoire size is often an important step in ecological and behavioural studies, but a reproducible and broadly applicable method for accomplishing this task is not currently available. We offer a generalizable method to automate the calculation and quantification of acoustic diversity using an unsupervised random forest framework. We tested our method using natural and synthetic datasets of known repertoire sizes that exhibit standardized variation in common acoustic features as well as in recording quality. We tested two approaches to estimate acoustic diversity using the output from unsupervised random forest analyses: (a) cluster analysis to estimate the number of discrete acoustic signals (e.g. repertoire size) and (b) an estimation of acoustic area in acoustic feature space, as a proxy for repertoire size. We find that our unsupervised analyses classify acoustic structure with high accuracy. Specifically, both approaches accurately estimate element diversity when repertoire size is small to intermediate (5–20 unique elements). However, for larger datasets (20–100 unique elements), we find that calculating the size of the area occupied in acoustic space is a more reliable proxy for estimating repertoire size. We conclude that our implementation of unsupervised random forest analysis offers a generalizable tool that researchers can apply to classify acoustic structure of diverse datasets. Additionally, output from these analyses can be used to compare the distribution and diversity of signals in acoustic space, creating opportunities to quantify and compare the amount of acoustic variation among individuals, populations or species in a standardized way. We provide R code and examples to aid researchers interested in using these techniques." @default.
- W3137265087 created "2021-03-29" @default.
- W3137265087 creator A5025046983 @default.
- W3137265087 creator A5031515772 @default.
- W3137265087 creator A5035261572 @default.
- W3137265087 creator A5038057401 @default.
- W3137265087 creator A5040689014 @default.
- W3137265087 creator A5071899551 @default.
- W3137265087 date "2021-04-27" @default.
- W3137265087 modified "2023-10-17" @default.
- W3137265087 title "A machine learning approach for classifying and quantifying acoustic diversity" @default.
- W3137265087 cites W14744639 @default.
- W3137265087 cites W1480336915 @default.
- W3137265087 cites W1513618424 @default.
- W3137265087 cites W193689476 @default.
- W3137265087 cites W195113891 @default.
- W3137265087 cites W1964777969 @default.
- W3137265087 cites W1986123007 @default.
- W3137265087 cites W1988571961 @default.
- W3137265087 cites W1992867509 @default.
- W3137265087 cites W2006614119 @default.
- W3137265087 cites W2023573555 @default.
- W3137265087 cites W2028335839 @default.
- W3137265087 cites W2033403400 @default.
- W3137265087 cites W2038484192 @default.
- W3137265087 cites W2039261343 @default.
- W3137265087 cites W2056217294 @default.
- W3137265087 cites W2059544058 @default.
- W3137265087 cites W2061428905 @default.
- W3137265087 cites W2064369092 @default.
- W3137265087 cites W2069266834 @default.
- W3137265087 cites W2069943693 @default.
- W3137265087 cites W2070644382 @default.
- W3137265087 cites W2075606380 @default.
- W3137265087 cites W2084726751 @default.
- W3137265087 cites W2086305062 @default.
- W3137265087 cites W2089401104 @default.
- W3137265087 cites W2109519818 @default.
- W3137265087 cites W2111910197 @default.
- W3137265087 cites W2113452374 @default.
- W3137265087 cites W2122977427 @default.
- W3137265087 cites W2128191692 @default.
- W3137265087 cites W2136738044 @default.
- W3137265087 cites W2138761758 @default.
- W3137265087 cites W2147631140 @default.
- W3137265087 cites W2156918685 @default.
- W3137265087 cites W2157722080 @default.
- W3137265087 cites W2160980990 @default.
- W3137265087 cites W2165493869 @default.
- W3137265087 cites W2166788494 @default.
- W3137265087 cites W2181485944 @default.
- W3137265087 cites W2186659481 @default.
- W3137265087 cites W2327432707 @default.
- W3137265087 cites W2504727469 @default.
- W3137265087 cites W2511492367 @default.
- W3137265087 cites W2515585059 @default.
- W3137265087 cites W2526050071 @default.
- W3137265087 cites W2564713586 @default.
- W3137265087 cites W2581974582 @default.
- W3137265087 cites W2769299584 @default.
- W3137265087 cites W2793134400 @default.
- W3137265087 cites W2883595988 @default.
- W3137265087 cites W2883879995 @default.
- W3137265087 cites W2894847505 @default.
- W3137265087 cites W2911964244 @default.
- W3137265087 cites W2915261428 @default.
- W3137265087 cites W2951661487 @default.
- W3137265087 cites W4255978131 @default.
- W3137265087 cites W48360405 @default.
- W3137265087 doi "https://doi.org/10.1111/2041-210x.13599" @default.
- W3137265087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34888025" @default.
- W3137265087 hasPublicationYear "2021" @default.
- W3137265087 type Work @default.
- W3137265087 sameAs 3137265087 @default.
- W3137265087 citedByCount "14" @default.
- W3137265087 countsByYear W31372650872021 @default.
- W3137265087 countsByYear W31372650872022 @default.
- W3137265087 countsByYear W31372650872023 @default.
- W3137265087 crossrefType "journal-article" @default.
- W3137265087 hasAuthorship W3137265087A5025046983 @default.
- W3137265087 hasAuthorship W3137265087A5031515772 @default.
- W3137265087 hasAuthorship W3137265087A5035261572 @default.
- W3137265087 hasAuthorship W3137265087A5038057401 @default.
- W3137265087 hasAuthorship W3137265087A5040689014 @default.
- W3137265087 hasAuthorship W3137265087A5071899551 @default.
- W3137265087 hasBestOaLocation W31372650872 @default.
- W3137265087 hasConcept C119857082 @default.
- W3137265087 hasConcept C121332964 @default.
- W3137265087 hasConcept C153180895 @default.
- W3137265087 hasConcept C154945302 @default.
- W3137265087 hasConcept C169258074 @default.
- W3137265087 hasConcept C24890656 @default.
- W3137265087 hasConcept C2778473898 @default.
- W3137265087 hasConcept C2780148112 @default.
- W3137265087 hasConcept C34951282 @default.
- W3137265087 hasConcept C41008148 @default.
- W3137265087 hasConcept C76155785 @default.
- W3137265087 hasConcept C8038995 @default.